Package 'spikeLI'

July 17, 2025

Type Package

Title Affymetrix Spike-in Langmuir Isotherm Data Analysis Tool

Version 2.69.0

Date 2009-04-03

Author Delphine Baillon, Paul Leclercq <paulleclercq@hotmail.com>, Sarah Ternisien, Thomas Heim, Enrico Carlon <enrico.carlon@fys.kuleuven.be>

Maintainer Enrico Carlon <enrico.carlon@fys.kuleuven.be>

Description SpikeLI is a package that performs the analysis of the Affymetrix spike-in data using the Langmuir Isotherm. The aim of this package is to show the advantages of a physical-chemistry based analysis of the Affymetrix microarray data compared to the traditional methods. The spike-in (or Latin square) data for the HGU95 and HGU133 chipsets have been downloaded from the Affymetrix web site. The model used in the spikeLI package is described in details in E. Carlon and T. Heim, Physica A 362, 433 (2006).

Imports graphics, grDevices, stats, utils

License GPL-2

biocViews Microarray, QualityControl

git_url https://git.bioconductor.org/packages/spikeLI

git_branch devel

git_last_commit 6ef3b4c

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-16

Contents

pikeLI-package	2
ollapse	3
onc133	1
onc95	
gu	5
vsc \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ϵ	
vsDG	
PIKE_IN 8	
PIKE_IN95	
SPIKE_INA)

S 1	Dil	kel	LI-	ра	cl	ka	g	е
- 21	<i>_</i>	NU1		pu	U1	<u>su</u>	5	Ľ

12

SPIKE_INB	10
SPIKE_INH	11

Index

spikeLI-package

Analysis of Affymetrix spike-in data (HGU95 and HGU133 Latin square) using the Langmuir Isotherm.

Description

spikeLI performs a series of analysis of Affymetrix spike-in data using inputs from physicalchemistry. It illustrates the advantages of such approach in determining expression levels and in identifying outliers compared to other methods. The analysis so far is restricted to spike-in genes. It will be extended to a generic CEL file. spikeLI does not require affy (and it is independent of any other bioconductor packages) as it reads spike-in data from a data frame variable hgu which is contained in the package.

Details

Package:spikeLIType:PackageVersion:1.0Date:2006-05-05License:GNU Public License

The package contains three basic functions: - Ivsc plot intensities as function of spike-in concentration for a fixed probe. - IvsDG plot intensities as function of affinity for a given probe set at fixed concentration. - collapse plot of intensities both as a function of concentration and affinities.

Author(s)

Delphine Baillon, Paul Leclercq, Sarah Ternisien, Thomas Heim and Enrico Carlon

Maintainer: Enrico Carlon <enrico.carlon@polytech-lille.fr>

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

collapse, Ivsc, IvsDG, hgu, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH, SPIKE_IN95

collapse

Description

This function takes as input one or more (up to four) probe sets of the Latin square spike-in data and produces collapse plots. A collapse plot contains data of different concentrations into a single graph. The user can compare in how far the data follows the predicted Langmuir behavior which is also given in the plot. Two models are compared: the basic Langmuir Isotherm and the Langmuir Isotherm with hybridization in solution.

Usage

```
collapse(probe_set, param = "NULL", probes = "NULL", output = "NULL", filename = "NULL")
```

Arguments

probe_set	This has to take the value of a probe set
param	In input one or more probe sets can be given
probes	A vector containing the probes
output	"PS" output on a postscript file
filename	the file in which collapses are given

Author(s)

Delphine Baillon, Paul Leclercq, Sarah Ternisien, Thomas Heim and Enrico Carlon

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, hgu, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

- ## You may display the matched intensities of a Probe-Set according to the Delta-G value collapse("1091_at")
- ## You may restrict the value to the Perfect match or mis-matches collapse("1091_at", "PM")

conc133

Concentration 95

Description

This datasets contains the values of the latine square matrix for the hgu133 Affymetrix Microarrays

Usage

data(conc133)

Format

The format is: num [1:14] 0 0.125 0.25 0.5 1 2 4 8 16 32 ...

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

data(conc133)

conc95

Concentration 95

Description

This datasets contains the values of the latine square matrix for the hgu95 Affymetrix Microarrays

Usage

data(conc95)

Format

The format is: num [1:14] 0 0.25 0.5 1 2 4 8 16 32 64 ...

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

data(conc95)

4

hgu

Description

This selected probe sets information contains the sequence of the selected probe sets, as well as the match and mismatch onformation and Delta G value required for the langmuir analysis

Usage

data(hgu)

Format

A data frame with 11452 observations on the following 9 variables.

Probe.Set.Name Name of probe set
conc a numeric vector
Ipm a numeric vector
Imm a numeric vector
Seq DNA Sequence of the probe
DGpm DG value of perfect match of the probe
DGmm Delta G value of the mismatch of the probe
DGRNA Delta G value of the RNA
FILE a factor with levels HGU133 HGU95

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

```
data(hgu)
## maybe str(hgu) ; plot(hgu) ...
```

Description

The function Ivsc plots intensity as a function of a concentration for a given probe in the spike-in Latin square experiments. It also peforms a non-linear data fit (using the package nls in the R-package stats) of the experimental data using the Langmuir Isotherm: I = I0 + Ac/(K+c) Solid and dashed lines are best fits according to this formula. Imax in the plot are given by Imax=I0+A, ie the asymptotic intensity in the limit of c to infinity.

Usage

Ivsc(probe_set, probe = "NULL", outfile = "NULL")

Arguments

probe_set	Probe set number of the probe set analyzed
probe	Integer giving the probe number (if not give the probe 1 is selected)
outfile	output the plotted data to a postscript file

Warning

Some probes have an irregular behavior and the non-linear square fit does not converge.

Author(s)

Delphine Baillon, Paul Leclercq, Sarah Ternisien, Thomas Heim and Enrico Carlon Maintainer: Enrico Carlon <enrico.carlon@iemn.univ-lille1.fr>

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

collapse, IvsDG, hgu, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

Ivsc("37777_at",4)

Ivsc

IvsDG

Plot Intensity as function of the affinity for a given probe set at fixed concentration.

Description

IvsDG plots intensity vs affinity (or free energy) for a probe set at a given concentration. The outcome is compared with the prediction from the Langmuir isotherm at that concentration. Two graphs are shown: on the left intensity vs. probe number for PM (blue) and MM (red); on the right the same value plotted as function of the affinities. The black line is the Langmuir Isotherm at the given concentration. The two green lines correspond to concentrations fourfold higher and lower compared to the given one.

Usage

IvsDG(probe_set, conc, outfile = "NULL")

Arguments

probe_set	Probe set number of the probe set analyzed
conc	Concentration value
outfile	"PS" output on a postscript file

Author(s)

Delphine Baillon, Paul Leclercq, Sarah Ternisien, Thomas Heim and Enrico Carlon

Maintainer: Enrico Carlon <enrico.carlon@iemn.univ-lille1.fr>

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, collapse, hgu, SPIKE_IN, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

```
data(hgu)
IvsDG("1024_at",64)
```

SPIKE_IN

Description

This dataset contains the names of the Probe-Sets contained in the HGU dataset

Usage

data(SPIKE_IN)

Format

A string containing the name of the genes

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, hgu, SPIKE_INA, SPIKE_INB, SPIKE_INH, SPIKE_IN95

Examples

you can first check if the data matches the predicted hybridisation value according to the langmuir
value, from the intensity versus the concentration value
Ivsc(SPIKE_IN[3])

you can then plot the value of the Intensity of the probe with the predicted value of the hybridisation
according to the Delta G, value
IvsDG(SPIKE_IN[5],64)

The collapse function will finally plot all the values of the probe set according to ## the langmuir absorption theory

collapse(SPIKE_IN[2])

By comparing the matched value and the mismatches, you will be able to identify errors which ## could have done while sampling the data, or if the error happens repeatedly this will show errors ## which will have happened while sequencing old data.

SPIKE_IN95

set of spike-in genes contained in the HGU95 dataset

Description

This dataset contains a set of gene names contained in the HGU95 dataset

Usage

data(SPIKE_IN95)

SPIKE_INA

Format

The set of spike-in gene names contained in the HGU dataset

Source

This data is experimental data extracted from the publicly available HGU dataset

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, hgu, SPIKE_INA, SPIKE_INB, SPIKE_INH

Examples

you can first check if the data matches the predicted hybridisation value according to the langmuir
value, from the intensity versus the concentration value
Ivsc(SPIKE_IN95[1])

you can then plot the value of the Intensity of the probe with the predicted value of the hybridisation
according to the Delta G, value
IvsDG(SPIKE_IN95[4],128)

The collapse function will finally plot all the values of the probe set according to ## the langmuir absorption theory

collapse(SPIKE_IN95[2])

By comparing the matched value and the mismatches, you will be able to identify errors which ## could have done while sampling the data, or if the error happens repeatedly this will show errors ## which will have happened while sequencing old data.

SPIKE_INA

Artificial Spike-in probesets

Description

This dataset contains the names of the probesets contained in the hgu dataset

Usage

data(SPIKE_INA)

Format

This dataset contains a set of String containing the names of the Artificial genes contained in the HGU dataset

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, hgu, SPIKE_INB, SPIKE_INH

Examples

you can first check if the data matches the predicted hybridisation value according to the langmuir
value, from the intensity versus the concentration value
Ivsc(SPIKE_INA[1])

you can then plot the value of the Intensity of the probe with the predicted value of the hybridisation
according to the Delta G, value
IvsDG(SPIKE_INA[4],128)

The collapse function will finally plot all the values of the probe set according to ## the langmuir absorption theory

collapse(SPIKE_INA[2])

By comparing the matched value and the mismatches, you will be able to identify errors which
could have done while sampling the data, or if the error happens repeatedly this will show errors
which will have happened while sequencing old data.

SPIKE_INB

Bacteria Spike-in probeset names

Description

This dataset contains the names of the Bacteria probe-sets contained in the HGU dataset

Usage

data(SPIKE_INB)

Format

names of the Bacteria probe-sets contained in the HGU dataset

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, hgu, SPIKE_INA, SPIKE_INH

Examples

you can first check if the data matches the predicted hybridisation value according to the langmuir
value, from the intensity versus the concentration value
Ivsc(SPIKE_INB[3])

you can then plot the value of the Intensity of the probe with the predicted value of the hybridisation
according to the Delta G, value

10

SPIKE_INH

IvsDG(SPIKE_INB[4],64)

The collapse function will finally plot all the values of the probe set according to
the langmuir absorption theory

collapse(SPIKE_INB[2])

By comparing the matched value and the mismatches, you will be able to identify errors which
could have done while sampling the data, or if the error happens repeatedly this will show errors
which will have happened while sequencing old data.

SPIKE_INH

Human Spike-in probe-set names

Description

This dataset contains the names of the Human probe-sets contained in the HGU dataset

Usage

data(SPIKE_INH)

Format

names of the human probe-sets contained in the HGU dataset

References

E. Carlon and T. Heim, Physica A 362, 433 (2006).

See Also

Ivsc, IvsDG, collapse, SPIKE_IN, hgu, SPIKE_INA, SPIKE_INB

Examples

you can first check if the data matches the predicted hybridisation value according to the langmuir
value, from the intensity versus the concentration value
Ivsc(SPIKE_INH[3])

you can then plot the value of the Intensity of the probe with the predicted value of the hybridisation
according to the Delta G, value
IvsDG(SPIKE_INH[5],256)

The collapse function will finally plot all the values of the probe set according to ## the langmuir absorption theory

collapse(SPIKE_INH[2])

By comparing the matched value and the mismatches, you will be able to identify errors which ## could have done while sampling the data, or if the error happens repeatedly this will show errors ## which will have happened while sequencing old data.

Index

* datasets conc133, 4 conc95, 4 hgu, 5 SPIKE_IN, 8 SPIKE_IN95, 8 SPIKE_INA, 9 SPIKE_INB, 10 SPIKE_INH, 11 * data collapse, 3 Ivsc, 6 IvsDG,7 * models collapse, 3 Ivsc, 6 IvsDG,7 spikeLI-package, 2* package spikeLI-package, 2 collapse, 2, 3, 4–11 conc133, 4 conc95, **4** hgu, 2, 3, 5, 6–11 Ivsc, 2–5, 6, 7–11 IvsDG, 2-6, 7, 8-11 SPIKE_IN, 2-7, 8, 9-11 SPIKE_IN95, 2, 8, 8 SPIKE_INA, 2-9, 9, 10, 11 SPIKE_INB, 2-10, 10, 11 SPIKE_INH, 2-10, 11 spikeLI (spikeLI-package), 2 spikeLI-package, 2