
Package ‘terapadog’
July 16, 2025

Type Package
Title Translational Efficiency Regulation Analysis using the PADOG

Method
Version 1.1.0
Description This package performs a Gene Set Analysis with the approach adopted

by PADOG on the genes that are reported as translationally regulated
(ie. exhibit a significant change in TE) by the DeltaTE package.
It can be used on its own to see the impact of translation regulation on
gene sets, but it is also integrated as an additional analysis method
within ReactomeGSA, where results are further contextualised in terms of
pathways and directionality of the change.

License GPL-2
Encoding UTF-8
LazyData FALSE
Imports DESeq2, KEGGREST, stats, utils, dplyr, plotly, htmlwidgets,

biomaRt, methods
Suggests apeglm, BiocStyle, knitr, rmarkdown, testthat
Collate preprocessing_helpers.R id_converter.R prepareTerapadogData.R

terapadogBricks.R terapadog.R get_FCs.R assign_Regmode.R
plotDTA.R

biocViews RiboSeq, Transcriptomics, GeneSetEnrichment, GeneRegulation,
Reactome, Software

RoxygenNote 7.3.2
VignetteBuilder knitr

URL https://github.com/Gionmattia/terapadog

BugReports https://github.com/Gionmattia/terapadog/issues

git_url https://git.bioconductor.org/packages/terapadog
git_branch devel
git_last_commit 44631d0
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-07-15
Author Gionmattia Carancini [cre, aut] (ORCID:

<https://orcid.org/0000-0001-7936-4883>)
Maintainer Gionmattia Carancini <gionmattia@gmail.com>

1

https://github.com/Gionmattia/terapadog
https://github.com/Gionmattia/terapadog/issues
https://orcid.org/0000-0001-7936-4883

2 assign_Regmode

Contents
assign_Regmode . 2
check_input_df . 3
check_integer_values . 3
check_matching_colnames . 4
check_value_range . 5
detect_separator . 5
generate_permutation_matrix . 6
get_FCs . 7
gsScoreFun . 8
id_converter . 9
plotDTA . 10
prepareGeneSets . 11
prepareTerapadogData . 12
terapadog . 13

Index 15

assign_Regmode This function reads the results of the function getFCs and assigns a
regulatory mode to each gene based on the Fold Change (FC) for RNA-
Seq Counts, Ribo-Seq Counts, or TE. It is intended for internal use and
its output is the output of get_FCs.R

Description

This function reads the results of the function getFCs and assigns a regulatory mode to each gene
based on the Fold Change (FC) for RNA-Seq Counts, Ribo-Seq Counts, or TE. It is intended for
internal use and its output is the output of get_FCs.R

Usage

assign_Regmode(res_df)

Arguments

res_df A dataframe, output of the function getFCs

Value

A dataframe, with two extra columns with info on the Regulatory Mode

Examples

Internal function, code cannot be run from here.
Not run:
mockdata <- data.frame(

Identifier = c("ENSG00000248713", "ENSG00000125780"),
log2FoldChange = c(-0.69, 2),
padj = c(0.16, 0.001),
RIBO_FC = c(0.27, 3),
RIBO_padj = c(0.45, 0.002),

check_input_df 3

RNA_FC = c(1, 0.56),
RNA_padj = c(0.001, 0.65)

)
result <- assign_Regmode(mockdata)
Only the head of the result file will be returned
print(head(result))

End(Not run)

check_input_df Check if a data frame is not empty (no rows, no columns, or NULL)

Description

Check if a data frame is not empty (no rows, no columns, or NULL)

Usage

check_input_df(df1)

Arguments

df1 A dataframe.

Value

NULL. Throws an error if df is empty or NULL.

Examples

#' # Internal function, code cannot be run from here.
Not run:
rna_df <- data.frame(Sample1 = c(1,2,3), Sample2 = c(1,2,3), Sample3 = c(1,2,3))
check_input_df(rna_df)

End(Not run)

check_integer_values Check and Convert Dataframe Columns to Integers

Description

This function checks whether each numeric column in the provided dataframe contains only integer
values. If a column contains floating-point numbers, it rounds the values and converts them to
integers.

Usage

check_integer_values(df)

4 check_matching_colnames

Arguments

df A dataframe to be checked and potentially modified.

Value

A dataframe with numeric columns as integers.

Examples

Internal function, code cannot be run from here.
Not run:
rna_file <- system.file("extdata", "rna_counts.tsv",
package = "terapadog")
rna_df <- read.table(rna_file, header = TRUE, sep = "\t")
check_integer_values(rna_df)

End(Not run)

check_matching_colnames

Check if two data frames have the same column names

Description

This function verifies that two data frames (RIBO and RNA) contain the same set of column names,
regardless of their order. This is important for how terapadog handles these matching samples
during shuffles.

Usage

check_matching_colnames(df1, df2)

Arguments

df1 A dataframe.
df2 A dataframe.

Value

NULL. Throws an error if column names do not match.

Examples

#' # Internal function, code cannot be run from here.
Not run:
rna_file <- system.file("extdata", "rna_counts.tsv",
package = "terapadog")
ribo_file <- system.file("extdata", "ribo_counts.tsv",
package = "terapadog")
rna_df <- read.table(rna_file, header = TRUE, sep = "\t")
ribo_df <- read.table(ribo_file, header = TRUE, sep = "\t")
check_matching_colnames(rna_df, ribo_df)

End(Not run)

check_value_range 5

check_value_range Check the Range of Values in a Dataframe

Description

This function checks if the range (max - min) of numeric values in the dataframe is below 1. If so,
this is an indication the data was scaled or anyway processed in a way that makes it not suitable for
DeltaTE’s analysis within terapadog. The input counts must be raw counts.

Usage

check_value_range(df)

Arguments

df A dataframe containing numeric values.

Value

NULL. Throws an error if the range does not exceed the threshold.

Examples

#' # Internal function, code cannot be run from here.
Not run:
rna_file <- system.file("extdata", "rna_counts.tsv",
package = "terapadog")
rna_df <- read.table(rna_file, header = TRUE, sep = "\t")
check_value_range(rna_df)

End(Not run)

detect_separator Detect the separator used in a file

Description

This function determines whether the file uses a comma or tab as a separator based on the file
extension (.csv or .tsv).

Usage

detect_separator(path)

Arguments

path A string representing the file path.

Value

A string representing the separator (comma or tab).

6 generate_permutation_matrix

Examples

Internal function, code cannot be run from here.
Not run:
result <- detect_separator("this/function/is/quite/easy.csv")
print(result)

End(Not run)

generate_permutation_matrix

Generate a Permutation Matrix for Group Assignments

Description

This function generates a permutation matrix based on given sample groups, handling paired and
unpaired designs. It also returns the group in the experiment with the least and most samples.
Finally, it recomputes the necessary iterations, based on the permutations done.

Usage

generate_permutation_matrix(G, NI, paired, block, verbose)

Arguments

G A factor vector indicating the group assignment for each sample.

NI Integer. The maximum number of permutations allowed.

paired Logical. If TRUE, the function accounts for paired samples.

block A factor vector specifying the blocking variable for paired samples.

verbose Logical. If TRUE, the function prints the number of permutations used.

Value

A list containing:

combidx A matrix where each column is a permutation of sample indices.

NI The number of permutations used.

bigG A vector of group labels excluding the smallest group.

minG The group label with the smallest number of samples.

Examples

G <- factor(rep(c("Wt", "Mut"), each = 3))
block <- factor(rep(c("Pat1", "Pat2", "Pat3", "Pat1", "Pat2", "Pat3")))
result <- terapadog:::generate_permutation_matrix(G, NI = 1000, paired = TRUE, block = block, verbose = FALSE)

get_FCs 7

get_FCs This function execute the Differential Translation Analysis on its own
using DeltaTE. The output is a dataframe with the FC in mRNA counts,
RIBO counts or TE between the conditions in exam.

Description

This function execute the Differential Translation Analysis on its own using DeltaTE. The output is
a dataframe with the FC in mRNA counts, RIBO counts or TE between the conditions in exam.

Usage

get_FCs(expression.data, exp_de, paired = FALSE)

Arguments

expression.data

A matrix containing the counts from RNA and RIBO samples.

exp_de A dataframe containing information regarding the samples. It has number of
rows equal to the columns of esetm.

paired Logical. Default is false. Set to TRUE if the experiment has paired samples in
its design.

Value

A dataframe with the results of a Differential Translation Analysis. Each gene’s change in RNA
counts, RFP(/RIBO) counts and TE are reported, along with the relative adjusted p-values. The
RegModes are also reported.

Examples

The execution of a DTA can take some time and computational resources.
Henceforth, the following code is not supposed to be run from the man page.
Load the data
rna_file <- system.file("extdata", "rna_counts.tsv",
package = "terapadog")
ribo_file <- system.file("extdata", "ribo_counts.tsv",
package = "terapadog")
sample_file <- system.file("extdata", "sample_info.tsv",
package = "terapadog")
Use the paths to load the files.

prepared_data <- prepareTerapadogData(rna_file, ribo_file,
sample_file, "1", "2")
Unpacks the expression.data and exp_de from the output
expression.data <- prepared_data$expression.data
exp_de <- prepared_data$exp_de
result <- get_FCs(expression.data, exp_de)

8 gsScoreFun

gsScoreFun Compute Gene Set Scores after Translational Efficiency Analysis

Description

This internal function performs gene set scoring by applying a modified version of the PADOG
algorithm to genes undergoing changes in translational efficiency. As reported by the results of the
DeltaTE package

Usage

gsScoreFun(
G,
block,
ite,
exp_de,
esetm,
paired,
grouped_indexes,
minG,
bigG,
gf,
combidx,
deINgs,
gslistINesetm

)

Arguments

G A factor vector representing the group for each sample.

block A factor indicating paired samples.

ite Integer, indicating the current iteration number.

exp_de A dataframe containing metadata for each sample, including grouping informa-
tion.

esetm A matrix containing RNA and RIBO count data, where rows correspond to genes
and columns to samples.

paired Logical, indicating whether the study design is paired.
grouped_indexes

A dataframe mapping RNA and RIBO samples to their corresponding indices.

minG A character value representing the smallest group.

bigG A character vector representing the larger group.

gf A vector containing gene weighting factors.

combidx A matrix storing all possible permutations for group shuffling.

deINgs A vector with genes that are both in the gene sets, as well in esetm.

gslistINesetm A list of indices mapping genes existing both in gslist and esetm.

id_converter 9

Details

The function performs differential translational analysis using DESeq2 and calculates gene set
scores based on adjusted p-values from the differential analysis.

Value

A named matrix containing two rows:

MeanAdjP Mean adjusted p-value for each gene set.
WeightedAdjP Weighted adjusted p-value incorporating gene weighting factors.

id_converter Convert the human gene identifier (hgnc_symbol or ensembl_gene_id)
to entrezgene_id format for the analysis.

Description

Convert the human gene identifier (hgnc_symbol or ensembl_gene_id) to entrezgene_id format for
the analysis.

Usage

id_converter(esetm, id_type, save_report = FALSE, outdir = tempdir())

Arguments

esetm A matrix with the gene count values and whose rownames are the gene Ids (gene
symbol or ensembl gene ID).

id_type A string representing the type of ID given as input. Must be either hgnc_symbol
or ensembl_gene_id.

save_report A boolean. By default, the duplicates report is not saved locally.
outdir Path to a directory where to save the report. If none is given, a temporary direc-

tory will be chosen. No report will be creatted if save_report is set to FALSE.

Value

A matrix with gene IDs in the entrezgene_id format. Also provides a report on the duplicated
mappings (conversion_report.txt) in the working dir.

Examples

To showcase thisl internal function, a small example is made.
gene_ids <- c('ENSG00000103197', 'ENSG00000008710', 'ENSG00000167964'
, 'ENSG00000167964')
esetm <- matrix(c(
2.5, 3.1, 5.2, 0.1,
4.1, 2.9, 6.3, 0.5,
1.5, 3.7, 4.8, 0.1), nrow = 4, byrow = FALSE)
rownames(esetm) <- gene_ids
colnames(esetm) <- c("Sample 1", "Sample 2", "Sample 3")
Call the function
esetm <- id_converter(esetm, "ensembl_gene_id")
print(head(esetm))

10 plotDTA

plotDTA This function will plot an interactive html plot of the results of
get_FCs.R That is to say, a plot of the genes undergoing translational
regulation, coloured by RegMode. Genes whose RegMode was Unde-
terminable or Undetermined are omitted.

Description

This function will plot an interactive html plot of the results of get_FCs.R That is to say, a plot of
the genes undergoing translational regulation, coloured by RegMode. Genes whose RegMode was
Undeterminable or Undetermined are omitted.

Usage

plotDTA(
FC_results,
save_plot = FALSE,
path = file.path(tempdir(), "plot.html")

)

Arguments

FC_results A dataframe containing the counts from RNA and RIBO samples.

save_plot Boolean. Default is FALSE. If TRUE, will save plot to a specified directory or
a temporary one if none are given.

path A string, pointing to where to save the html plot. If none is given, the plot will
be saved to a temporary directory. This parameter will be ignored if save_plot is
set to FALSE.

Value

An interactive html plot.

Examples

Creates a mock dataframe for this demonstration
df <- data.frame(

Identifier = c("Gene A", "Gene B", "Gene C", "Gene D"),
RegMode = c("Buffered", "Exclusive", "Undeterminable", "No Change"),
RNA_FC = c(-0.40, -0.5, NA, 0.01),
RIBO_FC = c(0.19, -0.3, 0.8, -0.02)

)
result <- plotDTA(df)

prepareGeneSets 11

prepareGeneSets This function retrieves KEGG-based gene sets, if ’gslist’ is set to
"KEGGRESTpathway". oOtherwise, it uses the user-supplied list of
gene sets, after verifying that enough genes overlap with the provided
expression data. It also computes a weighting factor ’gf’ to down-
weight genes that appear in many sets.

Description

This function retrieves KEGG-based gene sets, if ’gslist’ is set to "KEGGRESTpathway". oOther-
wise, it uses the user-supplied list of gene sets, after verifying that enough genes overlap with the
provided expression data. It also computes a weighting factor ’gf’ to down-weight genes that appear
in many sets.

Usage

prepareGeneSets(
esetm,
gslist = "KEGGRESTpathway",
organism = "hsa",
gs.names = NULL,
Nmin = 3,
verbose = FALSE

)

Arguments

esetm A matrix of expression data, whose rownames are gene IDs. Required for over-
lap checks with the sets.

gslist Either a user-supplied list of pathways, or the default string "KEGGRESTpath-
way", indicating that KEGG gene sets should be retrieved via the KEGGREST
package.

organism A three-letter string giving the organism code for KEGG. e.g. "hsa" for human.
Defaults is "hsa".

gs.names Character vector with the names of the gene sets. If specified, must have the
same length as gslist.

Nmin The minimum size of gene sets to be included in the analysis.

verbose Logical. If true, shows number of gene sets being worked upon.

Value

A list with three elements: gslist, gs.names, gf. gslist is the list of pathways/sets. gs.names is the
names of each gene pathway/set. gf is the vector of gene weights, computed from how frequents
genes are across sets.

Examples

Suppose 'esetm' is a matrix of counts, rownames are gene IDs.
esetm <- matrix(
data = c(10, 3, 25, 12, 8, 14, 7, 1, 5, 7, 2, 10, 11, 2, 27, 11, 8, 10, 6, 2, 4, 2),

12 prepareTerapadogData

nrow =11,
ncol = 2,
dimnames = list (
c("GeneA","GeneB","GeneC", "GeneD","GeneE", "GeneF", "GeneV", "GeneX","GeneY","GeneZ", "GeneW"),
c("Sample1", "Sample2"))
)
If we have our own sets in a list:
mySets <- list(

Path1 = c("GeneA","GeneB","GeneC"),
Path2 = c("GeneX","GeneY","GeneZ", "GeneW"),
Path3 = c("GeneA", "GeneZ", "GeneD", "GeneV"),
Path4 = c("GeneA","GeneB","GeneY", "GeneE", "GeneF"),
Path5 = c("GeneC", "GeneV")

)
gs.names <- c(Path1 = "Pathway_1",
Path2 = "Pathway_2",
Path3 = "Pathway_3",
Path4 = "Pathway_4",
Path5 = "Anne_PHathway")

geneSets <- terapadog:::prepareGeneSets(esetm, gslist = mySets, gs.names = gs.names)

prepareTerapadogData Prepare Data by Loading and Validating RNA, RIBO Counts, and
Metadata. This function reads RNA and RIBO count files, checks input
data validity and merges them into a single numerical matrix (expres-
sion.data). It also prepares the metatadata needed by padog (exp_de).

Description

Prepare Data by Loading and Validating RNA, RIBO Counts, and Metadata. This function reads
RNA and RIBO count files, checks input data validity and merges them into a single numerical
matrix (expression.data). It also prepares the metatadata needed by padog (exp_de).

Usage

prepareTerapadogData(
path_to_RNA_counts,
path_to_RIBO_counts,
path_to_metadata,
analysis.group.1,
analysis.group.2

)

Arguments

path_to_RNA_counts

A string representing the file path to the RNA counts data file (.csv or .tsv).
path_to_RIBO_counts

A string representing the file path to the RIBO counts data file (.csv or .tsv).
path_to_metadata

The file path to the metadata file (.csv or .tsv).

terapadog 13

analysis.group.1

A string specifying the baseline group in the experiment (e.g., WT, control, etc.).
analysis.group.2

A string specifying the target group to compare against the baseline (e.g., mu-
tant, disease, treatment, etc.).

Value

A list containing two data frames: expression.data and exp_de.

Examples

Data is also available in the "extdata" folder of this package.
The path will be automatically generated for the purpose of this example
rna_file <- system.file("extdata", "rna_counts.tsv",
package = "terapadog")
ribo_file <- system.file("extdata", "ribo_counts.tsv",
package = "terapadog")
sample_file <- system.file("extdata", "sample_info.tsv",
package = "terapadog")
Use the paths to load the files.

prepared_data <- prepareTerapadogData(rna_file, ribo_file,
sample_file, "1", "2")
Unpacks the expression.data and exp_de from the output
expression.data <- prepared_data$expression.data
exp_de <- prepared_data$exp_de
For sake of brevity, only the data frame's head will be printed out
print(head(expression.data))
print(head(exp_de))

terapadog Performs the main Gene Set Enrichement Analysis, by applying a mod-
ified version of the PADOG algorithm to genes undergoing changes in
TE.

Description

Performs the main Gene Set Enrichement Analysis, by applying a modified version of the PADOG
algorithm to genes undergoing changes in TE.

Usage

terapadog(
esetm = NULL,
exp_de = NULL,
paired = FALSE,
gslist = "KEGGRESTpathway",
organism = "hsa",
gs.names = NULL,
NI = 1000,
Nmin = 3,
verbose = TRUE

)

14 terapadog

Arguments

esetm A matrix containing the counts from RNA and RIBO samples. Rownames must
be ensembl GENEIDs, while column names must be sample names. Refer to
prepareTerapadogData.R to prepare input data.

exp_de A dataframe containing information regarding the samples. It has number of
rows equal to the columns of esetm. It has a formatted vocabulary, but can be
obtained by running prepareTerapadogData.R.

paired Logical. Specify is the study has a paired design or not. If it does, be sure that
the pairs are specified in the "Block" column of the exp_de dataframe.

gslist A list of named character vectors. Each vector is named after a KEGG pathway
ID and each element within the vector is an ENSEMBL gene ID for a gene part
of said pathway.

organism A three letter string giving the name of the organism supported by the "KEG-
GREST" package.

gs.names Character vector with the names of the gene sets. If specified, must have the
same length as gslist.

NI Number of iterations allowed to determine the gene set score significance p-
values.

Nmin The minimum size of gene sets to be included in the analysis.

verbose Logical. If true, shows number of iterations done.

Value

A dataframe with the PADOG score for each pathway in exam.

Index

∗ internal
assign_Regmode, 2
check_input_df, 3
check_integer_values, 3
check_matching_colnames, 4
check_value_range, 5
detect_separator, 5
generate_permutation_matrix, 6
gsScoreFun, 8
prepareGeneSets, 11

assign_Regmode, 2

check_input_df, 3
check_integer_values, 3
check_matching_colnames, 4
check_value_range, 5

detect_separator, 5

generate_permutation_matrix, 6
get_FCs, 7
gsScoreFun, 8

id_converter, 9

plotDTA, 10
prepareGeneSets, 11
prepareTerapadogData, 12

terapadog, 13

15

	assign_Regmode
	check_input_df
	check_integer_values
	check_matching_colnames
	check_value_range
	detect_separator
	generate_permutation_matrix
	get_FCs
	gsScoreFun
	id_converter
	plotDTA
	prepareGeneSets
	prepareTerapadogData
	terapadog
	Index

