# Filtered human PBMCs (10X Genomics) ## Introduction This performs an analysis of the public PBMC ID dataset generated by 10X Genomics [@zheng2017massively], starting from the filtered count matrix. ## Data loading ```r library(TENxPBMCData) all.sce <- list( pbmc3k=TENxPBMCData('pbmc3k'), pbmc4k=TENxPBMCData('pbmc4k'), pbmc8k=TENxPBMCData('pbmc8k') ) ``` ## Quality control ```r unfiltered <- all.sce ``` Cell calling implicitly serves as a QC step to remove libraries with low total counts and number of detected genes. Thus, we will only filter on the mitochondrial proportion. ```r library(scater) stats <- high.mito <- list() for (n in names(all.sce)) { current <- all.sce[[n]] is.mito <- grep("MT", rowData(current)$Symbol_TENx) stats[[n]] <- perCellQCMetrics(current, subsets=list(Mito=is.mito)) high.mito[[n]] <- isOutlier(stats[[n]]$subsets_Mito_percent, type="higher") all.sce[[n]] <- current[,!high.mito[[n]]] } ``` ```r qcplots <- list() for (n in names(all.sce)) { current <- unfiltered[[n]] colData(current) <- cbind(colData(current), stats[[n]]) current$discard <- high.mito[[n]] qcplots[[n]] <- plotColData(current, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() } do.call(gridExtra::grid.arrange, c(qcplots, ncol=3)) ```
Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-pbmc-filtered-var)Percentage of mitochondrial reads in each cell in each of the 10X PBMC datasets, compared to the total count. Each point represents a cell and is colored according to whether that cell was discarded.

```r lapply(high.mito, summary) ``` ``` ## $pbmc3k ## Mode FALSE TRUE ## logical 2609 91 ## ## $pbmc4k ## Mode FALSE TRUE ## logical 4182 158 ## ## $pbmc8k ## Mode FALSE TRUE ## logical 8157 224 ``` ## Normalization We perform library size normalization, simply for convenience when dealing with file-backed matrices. ```r all.sce <- lapply(all.sce, logNormCounts) ``` ```r lapply(all.sce, function(x) summary(sizeFactors(x))) ``` ``` ## $pbmc3k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.234 0.748 0.926 1.000 1.157 6.604 ## ## $pbmc4k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.315 0.711 0.890 1.000 1.127 11.027 ## ## $pbmc8k ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.296 0.704 0.877 1.000 1.118 6.794 ``` ## Variance modelling ```r library(scran) all.dec <- lapply(all.sce, modelGeneVar) all.hvgs <- lapply(all.dec, getTopHVGs, prop=0.1) ``` ```r par(mfrow=c(1,3)) for (n in names(all.dec)) { curdec <- all.dec[[n]] plot(curdec$mean, curdec$total, pch=16, cex=0.5, main=n, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(curdec) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) } ```
Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

(\#fig:unref-filtered-pbmc-variance)Per-gene variance as a function of the mean for the log-expression values in each PBMC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the variances.

## Dimensionality reduction For various reasons, we will first analyze each PBMC dataset separately rather than merging them together. We use randomized SVD, which is more efficient for file-backed matrices. ```r library(BiocSingular) set.seed(10000) all.sce <- mapply(FUN=runPCA, x=all.sce, subset_row=all.hvgs, MoreArgs=list(ncomponents=25, BSPARAM=RandomParam()), SIMPLIFY=FALSE) set.seed(100000) all.sce <- lapply(all.sce, runTSNE, dimred="PCA") set.seed(1000000) all.sce <- lapply(all.sce, runUMAP, dimred="PCA") ``` ## Clustering ```r for (n in names(all.sce)) { g <- buildSNNGraph(all.sce[[n]], k=10, use.dimred='PCA') clust <- igraph::cluster_walktrap(g)$membership colLabels(all.sce[[n]]) <- factor(clust) } ``` ```r lapply(all.sce, function(x) table(colLabels(x))) ``` ``` ## $pbmc3k ## ## 1 2 3 4 5 6 7 8 9 10 ## 487 154 603 514 31 150 179 333 147 11 ## ## $pbmc4k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 ## 497 185 569 786 373 232 44 1023 77 218 88 54 36 ## ## $pbmc8k ## ## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ## 1004 759 1073 1543 367 150 201 2067 59 154 244 67 76 285 20 15 ## 17 18 ## 64 9 ``` ```r all.tsne <- list() for (n in names(all.sce)) { all.tsne[[n]] <- plotTSNE(all.sce[[n]], colour_by="label") + ggtitle(n) } do.call(gridExtra::grid.arrange, c(all.tsne, list(ncol=2))) ```
Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

(\#fig:unref-filtered-pbmc-tsne)Obligatory $t$-SNE plots of each PBMC dataset, where each point represents a cell in the corresponding dataset and is colored according to the assigned cluster.

## Data integration With the per-dataset analyses out of the way, we will now repeat the analysis after merging together the three batches. ```r # Intersecting the common genes. universe <- Reduce(intersect, lapply(all.sce, rownames)) all.sce2 <- lapply(all.sce, "[", i=universe,) all.dec2 <- lapply(all.dec, "[", i=universe,) # Renormalizing to adjust for differences in depth. library(batchelor) normed.sce <- do.call(multiBatchNorm, all.sce2) # Identifying a set of HVGs using stats from all batches. combined.dec <- do.call(combineVar, all.dec2) combined.hvg <- getTopHVGs(combined.dec, n=5000) set.seed(1000101) merged.pbmc <- do.call(fastMNN, c(normed.sce, list(subset.row=combined.hvg, BSPARAM=RandomParam()))) ``` We use the percentage of lost variance as a diagnostic measure. ```r metadata(merged.pbmc)$merge.info$lost.var ``` ``` ## pbmc3k pbmc4k pbmc8k ## [1,] 7.003e-03 3.126e-03 0.000000 ## [2,] 7.137e-05 5.125e-05 0.003003 ``` We proceed to clustering: ```r g <- buildSNNGraph(merged.pbmc, use.dimred="corrected") colLabels(merged.pbmc) <- factor(igraph::cluster_louvain(g)$membership) table(colLabels(merged.pbmc), merged.pbmc$batch) ``` ``` ## ## pbmc3k pbmc4k pbmc8k ## 1 113 387 825 ## 2 507 395 806 ## 3 175 344 581 ## 4 295 539 1018 ## 5 346 638 1210 ## 6 11 3 9 ## 7 17 27 111 ## 8 33 113 185 ## 9 423 754 1546 ## 10 4 36 67 ## 11 197 124 221 ## 12 150 180 293 ## 13 327 588 1125 ## 14 11 54 160 ``` And visualization: ```r set.seed(10101010) merged.pbmc <- runTSNE(merged.pbmc, dimred="corrected") gridExtra::grid.arrange( plotTSNE(merged.pbmc, colour_by="label", text_by="label", text_colour="red"), plotTSNE(merged.pbmc, colour_by="batch") ) ```
Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

(\#fig:unref-filtered-pbmc-merged-tsne)Obligatory $t$-SNE plots for the merged PBMC datasets, where each point represents a cell and is colored by cluster (top) or batch (bottom).

## Session Info {-}
``` R version 4.0.4 (2021-02-15) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.12-books/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.12-books/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] batchelor_1.6.2 BiocSingular_1.6.0 [3] scran_1.18.5 scater_1.18.6 [5] ggplot2_3.3.3 TENxPBMCData_1.8.0 [7] HDF5Array_1.18.1 rhdf5_2.34.0 [9] DelayedArray_0.16.2 Matrix_1.3-2 [11] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 [13] Biobase_2.50.0 GenomicRanges_1.42.0 [15] GenomeInfoDb_1.26.4 IRanges_2.24.1 [17] S4Vectors_0.28.1 BiocGenerics_0.36.0 [19] MatrixGenerics_1.2.1 matrixStats_0.58.0 [21] BiocStyle_2.18.1 rebook_1.0.0 loaded via a namespace (and not attached): [1] AnnotationHub_2.22.0 BiocFileCache_1.14.0 [3] igraph_1.2.6 BiocParallel_1.24.1 [5] digest_0.6.27 htmltools_0.5.1.1 [7] viridis_0.5.1 fansi_0.4.2 [9] magrittr_2.0.1 memoise_2.0.0 [11] limma_3.46.0 colorspace_2.0-0 [13] blob_1.2.1 rappdirs_0.3.3 [15] xfun_0.22 dplyr_1.0.5 [17] callr_3.5.1 crayon_1.4.1 [19] RCurl_1.98-1.3 jsonlite_1.7.2 [21] graph_1.68.0 glue_1.4.2 [23] gtable_0.3.0 zlibbioc_1.36.0 [25] XVector_0.30.0 Rhdf5lib_1.12.1 [27] scales_1.1.1 DBI_1.1.1 [29] edgeR_3.32.1 Rcpp_1.0.6 [31] viridisLite_0.3.0 xtable_1.8-4 [33] dqrng_0.2.1 bit_4.0.4 [35] rsvd_1.0.3 ResidualMatrix_1.0.0 [37] httr_1.4.2 FNN_1.1.3 [39] ellipsis_0.3.1 pkgconfig_2.0.3 [41] XML_3.99-0.6 farver_2.1.0 [43] scuttle_1.0.4 CodeDepends_0.6.5 [45] sass_0.3.1 uwot_0.1.10 [47] dbplyr_2.1.0 locfit_1.5-9.4 [49] utf8_1.2.1 tidyselect_1.1.0 [51] labeling_0.4.2 rlang_0.4.10 [53] later_1.1.0.1 AnnotationDbi_1.52.0 [55] munsell_0.5.0 BiocVersion_3.12.0 [57] tools_4.0.4 cachem_1.0.4 [59] generics_0.1.0 RSQLite_2.2.4 [61] ExperimentHub_1.16.0 evaluate_0.14 [63] stringr_1.4.0 fastmap_1.1.0 [65] yaml_2.2.1 processx_3.4.5 [67] knitr_1.31 bit64_4.0.5 [69] purrr_0.3.4 sparseMatrixStats_1.2.1 [71] mime_0.10 compiler_4.0.4 [73] beeswarm_0.3.1 curl_4.3 [75] interactiveDisplayBase_1.28.0 tibble_3.1.0 [77] statmod_1.4.35 bslib_0.2.4 [79] stringi_1.5.3 highr_0.8 [81] ps_1.6.0 RSpectra_0.16-0 [83] lattice_0.20-41 bluster_1.0.0 [85] vctrs_0.3.6 pillar_1.5.1 [87] lifecycle_1.0.0 rhdf5filters_1.2.0 [89] BiocManager_1.30.10 jquerylib_0.1.3 [91] RcppAnnoy_0.0.18 BiocNeighbors_1.8.2 [93] cowplot_1.1.1 bitops_1.0-6 [95] irlba_2.3.3 httpuv_1.5.5 [97] R6_2.5.0 bookdown_0.21 [99] promises_1.2.0.1 gridExtra_2.3 [101] vipor_0.4.5 codetools_0.2-18 [103] assertthat_0.2.1 withr_2.4.1 [105] GenomeInfoDbData_1.2.4 grid_4.0.4 [107] beachmat_2.6.4 rmarkdown_2.7 [109] DelayedMatrixStats_1.12.3 Rtsne_0.15 [111] shiny_1.6.0 ggbeeswarm_0.6.0 ```