# Nestorowa mouse HSC (Smart-seq2) ## Introduction This performs an analysis of the mouse haematopoietic stem cell (HSC) dataset generated with Smart-seq2 [@nestorowa2016singlecell]. ## Data loading ```r library(scRNAseq) sce.nest <- NestorowaHSCData() ``` ```r library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] anno <- select(ens.mm.v97, keys=rownames(sce.nest), keytype="GENEID", columns=c("SYMBOL", "SEQNAME")) rowData(sce.nest) <- anno[match(rownames(sce.nest), anno$GENEID),] ``` After loading and annotation, we inspect the resulting `SingleCellExperiment` object: ```r sce.nest ``` ``` ## class: SingleCellExperiment ## dim: 46078 1920 ## metadata(0): ## assays(1): counts ## rownames(46078): ENSMUSG00000000001 ENSMUSG00000000003 ... ## ENSMUSG00000107391 ENSMUSG00000107392 ## rowData names(3): GENEID SYMBOL SEQNAME ## colnames(1920): HSPC_007 HSPC_013 ... Prog_852 Prog_810 ## colData names(2): cell.type FACS ## reducedDimNames(1): diffusion ## mainExpName: endogenous ## altExpNames(1): ERCC ``` ## Quality control ```r unfiltered <- sce.nest ``` For some reason, no mitochondrial transcripts are available, so we will perform quality control using the spike-in proportions only. ```r library(scater) stats <- perCellQCMetrics(sce.nest) qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent") sce.nest <- sce.nest[,!qc$discard] ``` We examine the number of cells discarded for each reason. ```r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_altexps_ERCC_percent ## 146 28 241 ## discard ## 264 ``` We create some diagnostic plots for each metric (Figure \@ref(fig:unref-nest-qc-dist)). ```r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, y="altexps_ERCC_percent", colour_by="discard") + ggtitle("ERCC percent"), ncol=2 ) ```
Distribution of each QC metric across cells in the Nestorowa HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-nest-qc-dist)Distribution of each QC metric across cells in the Nestorowa HSC dataset. Each point represents a cell and is colored according to whether that cell was discarded.

## Normalization ```r library(scran) set.seed(101000110) clusters <- quickCluster(sce.nest) sce.nest <- computeSumFactors(sce.nest, clusters=clusters) sce.nest <- logNormCounts(sce.nest) ``` We examine some key metrics for the distribution of size factors, and compare it to the library sizes as a sanity check (Figure \@ref(fig:unref-nest-norm)). ```r summary(sizeFactors(sce.nest)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.044 0.422 0.748 1.000 1.249 15.927 ``` ```r plot(librarySizeFactors(sce.nest), sizeFactors(sce.nest), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Nestorowa HSC dataset.

(\#fig:unref-nest-norm)Relationship between the library size factors and the deconvolution size factors in the Nestorowa HSC dataset.

## Variance modelling We use the spike-in transcripts to model the technical noise as a function of the mean (Figure \@ref(fig:unref-nest-var)). ```r set.seed(00010101) dec.nest <- modelGeneVarWithSpikes(sce.nest, "ERCC") top.nest <- getTopHVGs(dec.nest, prop=0.1) ``` ```r plot(dec.nest$mean, dec.nest$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.nest) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) points(curfit$mean, curfit$var, col="red") ```
Per-gene variance as a function of the mean for the log-expression values in the Nestorowa HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-ins (red).

(\#fig:unref-nest-var)Per-gene variance as a function of the mean for the log-expression values in the Nestorowa HSC dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to the spike-ins (red).

## Dimensionality reduction ```r set.seed(101010011) sce.nest <- denoisePCA(sce.nest, technical=dec.nest, subset.row=top.nest) sce.nest <- runTSNE(sce.nest, dimred="PCA") ``` We check that the number of retained PCs is sensible. ```r ncol(reducedDim(sce.nest, "PCA")) ``` ``` ## [1] 9 ``` ## Clustering ```r snn.gr <- buildSNNGraph(sce.nest, use.dimred="PCA") colLabels(sce.nest) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ```r table(colLabels(sce.nest)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 ## 203 472 258 175 142 229 20 83 74 ``` ```r plotTSNE(sce.nest, colour_by="label") ```
Obligatory $t$-SNE plot of the Nestorowa HSC dataset, where each point represents a cell and is colored according to the assigned cluster.

(\#fig:unref-nest-tsne)Obligatory $t$-SNE plot of the Nestorowa HSC dataset, where each point represents a cell and is colored according to the assigned cluster.

## Marker gene detection ```r markers <- findMarkers(sce.nest, colLabels(sce.nest), test.type="wilcox", direction="up", lfc=0.5, row.data=rowData(sce.nest)[,"SYMBOL",drop=FALSE]) ``` To illustrate the manual annotation process, we examine the marker genes for one of the clusters. Upregulation of _Car2_, _Hebp1_ amd hemoglobins indicates that cluster 8 contains erythroid precursors. ```r chosen <- markers[['8']] best <- chosen[chosen$Top <= 10,] aucs <- getMarkerEffects(best, prefix="AUC") rownames(aucs) <- best$SYMBOL library(pheatmap) pheatmap(aucs, color=viridis::plasma(100)) ```
Heatmap of the AUCs for the top marker genes in cluster 8 compared to all other clusters.

(\#fig:unref-heat-nest-markers)Heatmap of the AUCs for the top marker genes in cluster 8 compared to all other clusters.

## Cell type annotation ```r library(SingleR) mm.ref <- MouseRNAseqData() # Renaming to symbols to match with reference row names. renamed <- sce.nest rownames(renamed) <- uniquifyFeatureNames(rownames(renamed), rowData(sce.nest)$SYMBOL) labels <- SingleR(renamed, mm.ref, labels=mm.ref$label.fine) ``` Most clusters are not assigned to any single lineage (Figure \@ref(fig:unref-assignments-nest)), which is perhaps unsurprising given that HSCs are quite different from their terminal fates. Cluster 8 is considered to contain erythrocytes, which is roughly consistent with our conclusions from the marker gene analysis above. ```r tab <- table(labels$labels, colLabels(sce.nest)) pheatmap(log10(tab+10), color=viridis::viridis(100)) ```
Heatmap of the distribution of cells for each cluster in the Nestorowa HSC dataset, based on their assignment to each label in the mouse RNA-seq references from the _SingleR_ package.

(\#fig:unref-assignments-nest)Heatmap of the distribution of cells for each cluster in the Nestorowa HSC dataset, based on their assignment to each label in the mouse RNA-seq references from the _SingleR_ package.

## Miscellaneous analyses This dataset also contains information about the protein abundances in each cell from FACS. There is barely any heterogeneity in the chosen markers across the clusters (Figure \@ref(fig:unref-nest-facs)); this is perhaps unsurprising given that all cells should be HSCs of some sort. ```r Y <- colData(sce.nest)$FACS keep <- rowSums(is.na(Y))==0 # Removing NA intensities. se.averaged <- sumCountsAcrossCells(t(Y[keep,]), colLabels(sce.nest)[keep], average=TRUE) averaged <- assay(se.averaged) log.intensities <- log2(averaged+1) centered <- log.intensities - rowMeans(log.intensities) pheatmap(centered, breaks=seq(-1, 1, length.out=101)) ```
Heatmap of the centered log-average intensity for each target protein quantified by FACS in the Nestorowa HSC dataset.

(\#fig:unref-nest-facs)Heatmap of the centered log-average intensity for each target protein quantified by FACS in the Nestorowa HSC dataset.

## Session Info {-}
``` R version 4.1.1 (2021-08-10) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.3 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.14-bioc/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.14-bioc/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_GB LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats4 stats graphics grDevices utils datasets methods [8] base other attached packages: [1] celldex_1.3.0 SingleR_1.8.0 [3] pheatmap_1.0.12 scran_1.22.0 [5] scater_1.22.0 ggplot2_3.3.5 [7] scuttle_1.4.0 AnnotationHub_3.2.0 [9] BiocFileCache_2.2.0 dbplyr_2.1.1 [11] ensembldb_2.18.0 AnnotationFilter_1.18.0 [13] GenomicFeatures_1.46.0 AnnotationDbi_1.56.0 [15] scRNAseq_2.7.2 SingleCellExperiment_1.16.0 [17] SummarizedExperiment_1.24.0 Biobase_2.54.0 [19] GenomicRanges_1.46.0 GenomeInfoDb_1.30.0 [21] IRanges_2.28.0 S4Vectors_0.32.0 [23] BiocGenerics_0.40.0 MatrixGenerics_1.6.0 [25] matrixStats_0.61.0 BiocStyle_2.22.0 [27] rebook_1.4.0 loaded via a namespace (and not attached): [1] igraph_1.2.7 lazyeval_0.2.2 [3] BiocParallel_1.28.0 digest_0.6.28 [5] htmltools_0.5.2 viridis_0.6.2 [7] fansi_0.5.0 magrittr_2.0.1 [9] memoise_2.0.0 ScaledMatrix_1.2.0 [11] cluster_2.1.2 limma_3.50.0 [13] Biostrings_2.62.0 prettyunits_1.1.1 [15] colorspace_2.0-2 blob_1.2.2 [17] rappdirs_0.3.3 ggrepel_0.9.1 [19] xfun_0.27 dplyr_1.0.7 [21] crayon_1.4.1 RCurl_1.98-1.5 [23] jsonlite_1.7.2 graph_1.72.0 [25] glue_1.4.2 gtable_0.3.0 [27] zlibbioc_1.40.0 XVector_0.34.0 [29] DelayedArray_0.20.0 BiocSingular_1.10.0 [31] scales_1.1.1 edgeR_3.36.0 [33] DBI_1.1.1 Rcpp_1.0.7 [35] viridisLite_0.4.0 xtable_1.8-4 [37] progress_1.2.2 dqrng_0.3.0 [39] bit_4.0.4 rsvd_1.0.5 [41] metapod_1.2.0 httr_1.4.2 [43] RColorBrewer_1.1-2 dir.expiry_1.2.0 [45] ellipsis_0.3.2 pkgconfig_2.0.3 [47] XML_3.99-0.8 farver_2.1.0 [49] CodeDepends_0.6.5 sass_0.4.0 [51] locfit_1.5-9.4 utf8_1.2.2 [53] tidyselect_1.1.1 labeling_0.4.2 [55] rlang_0.4.12 later_1.3.0 [57] munsell_0.5.0 BiocVersion_3.14.0 [59] tools_4.1.1 cachem_1.0.6 [61] generics_0.1.1 RSQLite_2.2.8 [63] ExperimentHub_2.2.0 evaluate_0.14 [65] stringr_1.4.0 fastmap_1.1.0 [67] yaml_2.2.1 knitr_1.36 [69] bit64_4.0.5 purrr_0.3.4 [71] KEGGREST_1.34.0 sparseMatrixStats_1.6.0 [73] mime_0.12 xml2_1.3.2 [75] biomaRt_2.50.0 compiler_4.1.1 [77] beeswarm_0.4.0 filelock_1.0.2 [79] curl_4.3.2 png_0.1-7 [81] interactiveDisplayBase_1.32.0 statmod_1.4.36 [83] tibble_3.1.5 bslib_0.3.1 [85] stringi_1.7.5 highr_0.9 [87] bluster_1.4.0 lattice_0.20-45 [89] ProtGenerics_1.26.0 Matrix_1.3-4 [91] vctrs_0.3.8 pillar_1.6.4 [93] lifecycle_1.0.1 BiocManager_1.30.16 [95] jquerylib_0.1.4 BiocNeighbors_1.12.0 [97] cowplot_1.1.1 bitops_1.0-7 [99] irlba_2.3.3 httpuv_1.6.3 [101] rtracklayer_1.54.0 R6_2.5.1 [103] BiocIO_1.4.0 bookdown_0.24 [105] promises_1.2.0.1 gridExtra_2.3 [107] vipor_0.4.5 codetools_0.2-18 [109] assertthat_0.2.1 rjson_0.2.20 [111] withr_2.4.2 GenomicAlignments_1.30.0 [113] Rsamtools_2.10.0 GenomeInfoDbData_1.2.7 [115] parallel_4.1.1 hms_1.1.1 [117] grid_4.1.1 beachmat_2.10.0 [119] rmarkdown_2.11 DelayedMatrixStats_1.16.0 [121] Rtsne_0.15 shiny_1.7.1 [123] ggbeeswarm_0.6.0 restfulr_0.0.13 ```