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Motivation

The lab biologist and theoretician need to make a concerted effort to design experiments
that can be realised and analysed.

Vingron M. (2001), Bioinformatics, 17:389-390

Proper experimental design is needed to ensure that questions of interest can be
answered and that this can be done accurately, given experimental constraints, such as
costs of reagents and availability of mRNA

Dudoit S. (2002), Bioconductor short course

Besides economical aspects, the main task of experimental design is to remove bias -
systematic error which may invalidate the result of the data analysis.

lab capacities
financial issues

enough information
unbiased information
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A randomisation design to elicit responses to sensitive questions

Adipose men with hypertension were asked the following question:
 Are you able to get an erection during sexual activities?

In order to improve the rate of correct answers the following rule was introduced: Toss a
coin, in case of head answer the IIEF question correctly with yes/no correctly, in case of
tail answer an innocuous question correctly with yes/no:

 Does your telephone number end with an even digit?

π = unknown proportion with erection during sexual activity, which is the parameter to be estimated

λ = known proportion with telephone number ending with an even digit
p = observed proportion of yes responses

½⋅π + ½⋅λ = p, which provides an estimate π* = 2⋅p - λ

Do not believe in naive measurements.
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Experimental design issues for microarrys

• Design of the array itself:
 - which cDNA probe sequences to print
 - whether to use replicated probes
 - which control sequences
 - how many and where these should be printed

• Allocation of target samples to the slides
 - pairing of mRNA samples for hybridization
 - dye assignments
 - type and number of replicates

Taken from Dudoit S (2002) Bioconductor short course
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Statistical thinking

Uncertain

 knowledge

Knowledge of the
extent of

uncertainty in it

Useable

 knowledge
+ =

Measurement model

m = µ + e
m – measurement with error, µ - true but unknown value

What is the mean of e?
What is the variance of e?

Is there dependence between e and µ?
What is the distribution of e (and µ)?

Typically but not always: e ~ N(0,σ²)
Gaussian / Normal measurement model

Decisions on the
experimental design

influence the
measurement model.
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Useable Knowledge

• Quantitative knowledge:

 parameter estimates together with (1-α)⋅100% confidence intervals (CI)
 for a normal measurement model: µ ∈ [m – z1-α/2⋅SE, m + z1-α/2⋅SE]
 SE: standard error

 CI gives information on the precision of estimates, how close estimate
 and true but unknown value are.

• Qualitative knowledge:

Rejection of a null hypothesis, statistical test
 No evidence for a difference is not evidence for no difference
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Taming of Uncertainty
How to handle variances and variability?

1. Var(X+Y) = Var(X) + Var(Y) for two independent random variables X and Y

2. Var(c⋅X) = c2⋅Var(X) for c, a real constant, and random variable X

Application: Variance of the arithmetic mean (SE2)

∑
=

=
n

1i
in

1 Xm

with Xi independent and identical distributed (iid) with Var(Xi) = σ2

Var(m) = )X(Varn
n

1i
i

2 ∑
=

− ⋅  = ∑
=

− ⋅
n

1i
i

2 )X(Varn  = n-1 σ2



Practical microarray analysis – experimental design

Heidelberg, September 2002 8

The Statistical test

• Question of interest (Alterative): Is the gene G differentially expressed between two cell populations?

• Answer question via reductio ad absurdum (proof by contradiction): Show that there is no evidence to
support the logical contrary of the alternative. The logical contrary of the alternative is called null
hypothesis.

• Null hypothesis: The gene G is not differentially expressed between two cell populations of interest.

• A test statistic T is introduced which measures the fit of the observed data to the null hypothesis.
A test distribution P is introduced which quantifies the variability of the test statistic T in case the null
hypothesis is true.
It will be checked if the test statistic evaluated at the observed data tobs behaves typically (not extreme) with
respect to the test distribution. The p-value is calculated: P( T ≥ tobs ) = p.
A criteria is needed to asses not typical or extreme behaviour of the test statistic via the p – value which is
called the level of the test: αα .

• The observed data does not fit to the null hypothesis if p < αα  or tobs > t1-αα  where t1-αα  is the 1-α quantile of the
test distribution P. t1-αα  is also called the critical value. The conditions p < αα  and tobs > t1-αα  are equivalent.

• If p < αα  or tobs > t1-αα  the null hypothesis will be rejected. If p ≥ αα  or tobs ≥ t1-αα  the null hypothesis can not be
rejected – this does not mean that it is true.
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The statistical test is a decision problem

True state of nature

Test result

Gene is differentially
expressed between two cell

populations

Gene is not differentially
expressed between two cell

populations

p < αα OK false positive decision
happens with probability α

p ≥≥ αα false negative decision
happens with probability β

OK

Two sources of error: false positive rate αα, false negative rate ββ
Power of a test: Ability to detect a difference if there is a true difference

Power – true positive rate.

Power = 1 - ββ
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Controlling the power – sample size calculations

The test should produce a significant result (level α) with a power of 1-β if the true
difference in expression is ∆ = µ1 - µ2.

A normal measurement model is assumed: mi ~ N(µi, σ2/ni)
 mi - observed arithmetic mean (of log-transformed expression) in cell population i
 versus a reference population
 µi - true but unknown (log-transformed) expression level,
 σ2 - variability in individual observation,
 ni – number of probes from cell polulation i (i = 1, 2,)

Test statistics: D = m1 – m2 Var(m1-m2) = Var(m1)+Var(m2)

= σ2⋅[1/n1+1/n2] = σ2
n1,n2

Distribution of D under:
 null hypothesis (∆=0): D ~ N(0, σ2

n1,n2)
 alternative (∆≠0): D ~ N(∆,σ2

n1,n2)
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Controlling the power – sample size calculations

The test should produce a significant result (level α) with a power of 1-β if the true
difference in expression is ∆ = µ1 - µ2.

The above requirement is fulfilled if: ∆ = (z1-α/2 + z1-β)⋅σ2
n1,n2

or
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Controlling the power – sample size calculations
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Measurement model for cDNA arrays

Gene expression under condition 2 – intensity of red colour,
Gene expression under condition 1 – intensity of green colour

Measurement: mRed2 = 








−

−

1CGene

2CGene
2 G

R
Log  = γ12 + δ + e

γ12 – log-transformed true differential expression of gene between condition 1 and 2
δ - dye effect, e – measurement error with E[e] = 0 and Var(e) = σ2

If colour is swapped C2 → green, C1 → red: mRed1 = 








−

−

2CGene

1CGene
2 G

R
Log  = -γ12 + δ + e

Consider m = ½ (mRed2 – mRed1) with E[m] = γ12 and Var(m) = ½⋅σ2

Dye effect is removed and precision is increased
without increasing the actual sample size
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Consequences of a design desicion

• n arrays used without dye swap:
 

 γ12 is estimated by ∑
=

n

1i
in

1 m  with precision σ²/n and possible bias δ.

• n arrays used with dye swap:
 
 This results in n/2 pairs of arrays

 γ12 is estimated by )mm(5.0 i
1dRe

2/n

1i

i
2dRen

2 ∑
=

−⋅

 with precision [4/n2]⋅[n/2]⋅(1/4)⋅2⋅σ² = σ²/n and no bias δ.
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Graphical representations of experiments: Multi – digraphs

• Vertices mRNA samples

• Edges hybridization

• Direction Dye assignment
 Green Red

C2

C1 C3

C1 C3C2

R
Reference

design
with dye swap

Which design gives the most precise
estimate of the contrast

γ12, γ13, γ23?

most information is collected on a
condition which is of no interest

All pairs
design

with dye swap
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Comparing the reference and all pair design

• Reference design:
 - Each pair of slides estimates γRC with precision ½⋅σ2.
 - To get γCaCb it is necessary to subtract the estimate of γRCa from γRCb

 γCaCb = log2[Eb/Ea] = log2[Eb⋅ER /Ea⋅ER] = log2[Eb/ER] - log2[Ea/ER] = γRCb - γRCa

 - The estimate of γCaCb has precision σ2.
 - The six slides used give the estimates looked for with precision σ2.
 - If every pair of slides is replicated and estimates of two equal pairs are
 combined by taking the average, the resulting precision of the estimated
 γCaCb is ½⋅σ2.

• All pair design:
- Each pair of slides estimates γCaCb with precision ½⋅σ2.

• Summary: For the same precision the reference design requires two times as many
   hybridizations or slides as the all pair design.
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Graphical representation – summary

• The structure of the graph determines which effects can be estimated and the precision
of the estimates:

 - Two mRNA samples can be compared only if there is a path joining the
 corresponding two vertices

 - The precision of the estimated contrast then depends on the number of paths
 joining the two vertices and is inversely related to the length of the paths.

• Direct comparisons within slides yield more precise estimates than indirect ones
between slides.
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2x2 factorial experiments
two factors, two levels each

Study the joint effect of two conditions / treatments, A and B, on the gene expression of
a cell population of interest.

There are four possible condition / treatment combinations:

AB: both treatments/conditions are applied
A: only treatment/condition A is applied
B: only treatment/condition B is applied
0: cells are not treated or exposed

Design with 12 slides

ABB

0 A
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2x2 factorial experiments
two factors, two levels each

For each gene, consider a linear model for the joint effect of A and B on the expression:

ν: baseline effect
α: main effect if treatment/condition A is applied
β: main effect if treatment/condition B is applied
ψ: interaction between A and B

Log-ratio M for hybridisation A → AB estimates µAB - µA = β + ψ
Log-ratio M for hybridisation A → B estimates µB - µA = β - α

+ 10 others

µ0 = ν
µA = ν + α
µB = ν + β

µAB = ν + α + β + ψ

ABB

0 A



Practical microarray analysis – experimental design

Heidelberg, September 2002 20

Regression analysis
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ABB

0 A

• For parameter θ = (α, β, ψ) define the design
matrix X such that E(M) = Xθ.

• For each gene, compute least square estimate
θ* = (X’X)-1X’M (BLUE)

• Obtain measures of precision of estimated
effects.

• Use all possibilities of the theory of linear
models.

Design problem:
• Assume each measurement M is made with

variability σ2. How precise can we estimate the
components or contrasts of θ?
Answer: Look at (X’X)-1
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2 x 2 factorial designs

> x.mat

     alpha beta   psi

0>A      1    0     0

0<A     -1    0     0

0>B      0    1     0

0<B      0   -1     0

0>AB     1    1     1

0<AB    -1   -1    -1

A>AB     0    1     1

A<AB     0   -1    -1

B>AB     1    0     1

B<AB    -1    0    -1

A>B     -1    1     0

A<B      1   -1     0

Var(A-B) = Var(A) + Var(B) - 2⋅Cov(A,B)

ABB

0 A

> precision.rfc(x.mat)

$inv.mat

         alpha   beta   psi

  alpha  0.250  0.125 -0.25

  beta   0.125  0.250 -0.25

  psi   -0.250 -0.250  0.50

$effects

alpha  beta   psi   A-B

 0.25  0.25  0.50  0.25
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2 x 2 factorial designs

BA

AB

0

BA

AB

0

BA

AB

0

BA

AB

0

BA

AB

0

Design V
All-pairs

Scaled variances of estimated effects
compare.2.by.2.designs.rfc()

      D.I D.II  D.III  D.IV  D.V D.tot

alpha   2    1   0.75  1.00  0.5  0.25

beta    2    1   0.75  0.75  0.5  0.25

psi     3    3   1.00  2.00  1.0  0.50

A-B     2    2   1.00  0.75  0.5  0.25

Design I
Common ref.

Design II
Common ref.

Design III
Connected

Design IV
Connected
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Experimental Design - Conclusions
• Designs for time course experiments: Yee Hwa Yang (2002)

• In addition to experimental constraints, design decisions should be guided by knowledge of
which effects are of greater interest to the investigator.

• The experimenter should decide on the comparisons for which s/he wants the most precision
and these should be made within slides to the extent possible.

• Efficiency of an experimental design can be measured in terms of different quantities (number
of slides, units of biological material)

• Issues:
 - Replication, type of replication
 within or between, biological or technical,
 generalizibility vs. reproducibility
 - Sample size and power calculations
 - Dye assignment

• Fundamental principles of good design: balance and replication
Balance insures that the effects of interest are not confounded with other sources of variation. Replication
improves the precision of estimates and provides degrees of freedom for error estimation.

• Further reading: Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays,
Biostatistics, 2:183-201


