
cDNA microarray
experiments: pre-processing 

and experimental design

Statistics and Genomics - Lecture 1, Part II
Department of Biostatistics

Harvard School of Public Health
January 23-25, 2002



Outline of lecture 1, Part II

cDNA microarrays

• Pre-processing: Image analysis;

• Pre-processing: Normalization;

• Experimental design.



Terminology
• Probe: DNA spotted on the array, aka. spot, 

immobile substrate.
• Target: DNA hybridized to the array, mobile 

substrate.
• Sector: collection of spots printed using the same 

print-tip (or pin),
aka. print-tip-group, pin-group, spot matrix, 
grid.

• Batch: collection of slides with the same probe 
layout.

• The terms slide or array are often used to refer to 
the printed microarray.



4 x 4 sectors
399 probes/sector
6,384 probes/array



Image analysis



Image analysis

• The raw data from a cDNA microarray
experiment consist of pairs of image files, 
16-bit TIFFs, one for each of the dyes.

• Image analysis is required to extract 
measures of the red and green fluorescence 
intensities for each spot on the array.



Image analysis

1. Addressing. Estimate location of 
spot centers.

2. Segmentation. Classify pixels as 
foreground (signal) or background.

3. Information extraction. For 
each spot on the array and each 
dye

• signal intensities;
• background intensities; 
• quality measures.

R and G for each spot on the array.



Segmentation

Adaptive segmentation, SRG Fixed circle segmentation

Spots usually vary in size and shape.



Seeded region growing
• Adaptive segmentation method.
• Requires the input of seeds, either individual 

pixels or groups of pixels, which control the 
formation of the regions into which the image will 
be segmented. 
Here, based on fitted foreground and background 
grids from the addressing step.

• The decision to add a pixel to a region is based on 
the absolute gray-level difference of that pixel’s 
intensity and the average of the pixel values in the 
neighboring region.

• Done on combined red and green images.



Local background

---- GenePix

---- QuantArray

---- ScanAnalyze



Morphological opening
• The image is probed with a structuring element, 

here, a square with side length about twice the 
spot to spot distance.

• Morphological opening: erosion followed by 
dilation.

• Erosion (Dilation): the eroded (dilated) value at a 
pixel x is the minimum (maximum) value of the 
image in the window defined by the structuring 
element when its origin is at x.

• Done separately for the red and green images.
• Produces an image of the estimated background 

for the entire slide.



Background matters

Morphological opening Local background



Quality measures
• Spot quality

– Brightness: foreground/background ratio;
– Uniformity: variation in pixel intensities and ratios of 

intensities;
– Morphology: area, perimeter, circularity.

• Slide quality
– Percentage of spots with no signal;
– Range of intensities;
– Distribution of spot signal area, etc.

• How to use quality measures in subsequent analyses?



Spot
• Software package. Spot, built on the R language and 

environment for statistical computing and graphics.
• Batch automatic addressing.
• Segmentation. Seeded region growing (Adams & Bischof

1994): adaptive segmentation method, no restriction on the size 
or shape of the spots.

• Information extraction
– Foreground. Mean of pixel intensities within a spot.
– Background. Morphological opening: non-linear filter 

which generates an image of the estimated background 
intensity for the entire slide.

• Spot quality measures.



Normalization



Normalization

• Identify and remove sources of systematic 
variation in the measured fluorescence intensities, 
other than differential expression, for example 
– different labeling efficiencies of the dyes;
– different amounts of Cy3- and Cy5-labeled mRNA;
– different scanning parameters;
– print-tip, spatial, or plate effects, etc.

• Necessary for within and between slides 
comparisons of expression levels.



Normalization

• The need for normalization can be seen most 
clearly in self-self hybridizations where the same 
mRNA sample is labeled with the Cy3 and Cy5 
dyes.

• The imbalance in the red and green intensities is 
usually not constant across the spots within and 
between arrays, and can vary according to overall 
spot intensity, location, plate origin, etc.

• These factors should be considered in the 
normalization.



Single-slide data display

• Usually: R vs. G
log2R vs. log2G.

• Preferred 
M = log2R - log2G

vs.  A = (log2R + log2G)/2.
• An MA-plot amounts to a 45o

counterclockwise rotation of a log2R vs. 
log2G plot followed by scaling.



Self-self hybridization
log2 R vs. log2 G M vs. A

M = log2R - log2G,   A = (log2R + log2G)/2



Self-self hybridization

Robust local regression
within sectors 
(print-tip-groups)
of intensity log-ratio M
on average log-intensity A.

M = log2R - log2G,   A = (log2R + log2G)/2

M vs. A plot



Apo AI experiment
• Goal. Identify genes with altered expression in 

the livers of apo AI knock-out mice compared to 
inbred C57Bl/6 control mice. 

• 8 treatment (trt) mice and 8 control (ctl) mice.
• 16 hybridizations: target mRNA from each of 

the 16 mice is labeled with Cy5, pooled mRNA 
from control mice is labeled with Cy3.

• Probes: 6,384 spots, including 257 genes related 
to lipid metabolism.



Probes: 6,384 spots, including 257 genes related to lipid metabolism.

Target mRNA samples:
R = apo A1 ko mouse liver mRNA
G = pooled control C57Bl/6 mouse liver mRNA



Diagnostic plots

• Diagnostics plots of various spot statistics, 
such as red and green log-intensities, intensity 
log-ratios M, average log-intensity A, spot 
area, etc. 
– Boxplots;
– 2D images or spatial plots;
– Scatter plots, e.g. MA-plots;
– Density plots.

• Stratify plots according to layout parameters, 
e.g. sector.



MA-plot



MA-plot by sector



Boxplots by sector



2D image



Normalization

• Within-slide
– Location normalization (additive on log-scale).
– Scale normalization (multiplicative on log-

scale).
– Which spots to use?

• Paired-slides (dye-swap experiments)
– Self-normalization.

• Between-slides.



Location normalization

log2R/G    log2R/G –l(intensity, location, …)
• Global normalization. Normalization function l 

is constant across the spots and equal to the mean 
or median of the log-ratios M.

• Adaptive normalization. Normalization function 
l depends on a  number of predictor variables, 
such as spot intensity, location, plate origin.

• The normalization function can be obtained by 
robust locally weighted regression of the log-
ratios M on the predictor variables.
E.g. lowess or loess smoothers.



Location normalization
• Intensity-dependent normalization.

Regression of M on A.
• Intensity and sector-dependent normalization.

Same as above, for each sector separately.
• Spatial normalization. 

Regression of M on 2D-coordinates. 
• Other variables: time of printing, plate, etc.
• Composite normalization.



Post-normalization MA-plots



Post-normalization boxplots



Post-normalization densities



Post-normalization images



Images of normalization functions



Scale normalization

• The log-ratios M from different sectors or 
plates may exhibit different spreads and 
some scale adjustment may be necessary.

log2R/G    (log2R/G –l)/s

• Can use a robust estimate of scale like the 
median absolute deviation (MAD)
MAD = median | M – median(M) |.



Which genes to use?

• All spots on the array.
• Constantly expressed genes (housekeeping).
• Controls

– Spiked controls (e.g. plant genes);
– Genomic DNA titration series;
– Microarray sample pool (MSP).

• Rank invariant set.



Follow-up dye-swap experiment

• Probes
– 50 distinct clones with largest absolute t-statistics from 

apo AI experiment.
– 72 other clones.

• Spot each clone 8 times .

• Two hybridizations with dye-swap: 
Slide 1:  trt → red, ctl → green.
Slide 2:  trt → green, ctl → red.



Dye-swap experiment



Self-normalization
• Slide 1, M = log2 (R/G) - l
• Slide 2, M’ = log2 (R’/G’) - l’

Combine by subtracting the normalized log-ratios:
[ (log2 (R/G) - l) - (log2 (R’/G’) - l’) ] / 2

≈ [ log2 (R/G) + log2 (G’/R’) ] / 2
≈ [ log2 (RG’/GR’) ] / 2
provided l = l’.
Assumption: the normalization functions are the same for the two

slides.



Checking the assumption

MA plot for slides 1 and 2



Result of self-normalization

(M - M’)/2 vs. (A + A’)/2



Summary
Case 1. Only a few genes are expected to change.

Within-slide
– Location: intensity + sector-dependent normalization.
– Scale: for each sector, scale by MAD.

Between-slides
– An extension of within-slide scale normalization. 

Case 2. Many genes expected to change.
– Paired-slides: Self-normalization.
– Use of controls or known information.



MarrayNorm Bioconductor package

• Class definitions for microarray data;
• Functions for diagnostic plots;
• Functions for normalization.



Experimental design

O A

B AB



Combining data across slides

Genes

Arrays

M = log2( Red intensity / Green intensity)

0.46 0.30 0.80 1.51 0.90 ...
-0.10 0.49 0.24 0.06 0.46 ...
0.15 0.74 0.04 0.10 0.20 ...
-0.45 -1.03 -0.79 -0.56 -0.32 ...
-0.06 1.06 1.35 1.09 -1.09 ...
…           …           …           …           …

Data on G genes for n hybridizations

Array1   Array2     Array3      Array4 Array5 …

Gene2
Gene1

Gene3

Gene5
Gene4

G x n genes-by-arrays data matrix

…



Combining data across slides

D

F

BA

C

E

… but columns have structure
How can we design experiments and combine data across slides 
to provide accurate estimates of the effects of interest?

Linear models



Experimental design

Proper experimental design is needed to 
ensure that questions of interest can be 
answered and that this can be done 
accurately, given experimental constraints, 
such as cost of reagents and availability of 
mRNA.



Experimental design

• Design of the array itself 
– which cDNA probe sequences to print;
– whether to use replicated probes;
– whether to use control sequences;
– how many and where these should be printed.

• Allocation of mRNA samples to the slides 
– pairing of mRNA samples for hybridization;
– dye assignments;
– type and number of replicates. 



Graphical representation
Multi-digraph
• Vertices: mRNA samples;
• Edges: hybridization;
• Direction: dye assignment. 

Cy3 sample

Cy5 sample

D

F

BA

C

E

A design for 6 types of mRNA samples



Graphical representation

• The structure of the graph determines which 
effects can be estimated and the precision of the 
estimates. 
– Two mRNA samples can be compared only if there is a 

path joining the corresponding two vertices. 
– The precision of the estimated contrast then depends on 

the number of paths joining the two vertices and is 
inversely related to the length of the paths.

• Direct comparisons within slides yield more 
precise estimates than indirect ones between 
slides.



Comparing K treatments

(i) Common reference design (ii) All-pairs design

Question: Which design gives the most precise estimates 
of the contrasts A1-A2, A1-A3, and A2-A3?

O

A1 A2 A3 A1 A2

A3



Comparing K treatments

• Answer: The all-pairs design is best, because 
comparisons are done within slides.
For the same precision, the common reference design 
requires three times as many hybridizations as the all-pairs 
design.

• In general, for K treatments
Relative efficiency

=  2K/(K-1)  = 4,  3,  8/3, … 2.
For the same precision, the common reference 
design requires 2K/(K-1) times as many 
hybridizations as the all-pairs design.



2 x 2 factorial experiment
two factors, two levels each

1
8/3
1

4/3
(4)

14/322Contrast A-B
3
1
1

(1)
112Main effect A
112Main effect B
24/33Interaction AB

(5)(3) (2)

(1) Common ref.

Scaled variances of estimated effects

(2) Common ref. (4) Connected (5) All-pairs(3) Connected



Experimental design

• In addition to experimental constraints, design 
decisions should be guided by the knowledge of 
which effects are of greater interest to the 
investigator.
E.g. which main effects, which interactions. 

• The experimenter should thus decide on the 
comparisons for which he wants most precision 
and these should be made within slides to the 
extent possible.



Issues in experimental design

• Replication.
• Type of replication: 

– within or between slide replicates; 
– biological or technical replicates.

• Sample size and power calculations.
• Dye assignments.
• Combining data across slides and sets of 

experiments: 
regression analysis … more later.



2 x 2 factorial experiment

O A

B AB

Study the joint effect of two treatments (e.g. drugs), 
A and B, say, on the gene expression response of tumor cells. 

There are four possible treatment combinations 

AB: both treatments are administered;
A  : only treatment A is administered;
B  : only treatment B is administered;
O  : cells are untreated.



2 x 2 factorial experiment
For each gene, consider 
a linear model for the 
joint effect of treatments 
A and B on the 
expression response: µµ

βµµ
αµµ

γβαµµ

 = 
 +  = 
 + =

+  +  + =

O

B

A

AB

µ: baseline effect;
α: treatment A main effect;
β: treatment B main effect;
γ: interaction between treatments A and B.



2 x 2 factorial experiment

Log-ratio M  for hybridization

estimates

γβµµ +  =− AAB

O A

B AB

A AB

Log-ratio M  for hybridization

estimates

αβµµ  −  =− AB

A B

etc.



Regression analysis
• For parameters θ = (α, β, γ), define a 

design matrix X so that E(M)=Xθ.
• For each gene, compute least squares estimates of θ.
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Regression analysis

• Combine data across slides for complex designs 
(can “link” different sets of hybridizations).

• Obtain unbiased and efficient estimates of the 
effects of interest (BLUE).

• Hypothesis testing.
• Use estimated effects in pattern discovery and 

recognition.
• Extensions: 

– generalized linear models, 
– robust weighted regression, etc.
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