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Classification

Task. Assign objects to classes on the basis of measurements made
on the objects.

Unsupervised learning. The classes are unknown a priori and
need to be “discovered” from the data.

a.k.a. cluster analysis; class discovery; unsupervised pattern recognition.

Supervised learning. The classes are predefined and the task is
to understand the basis for the classification from a set of labeled

objects (training or learning set). This information is then used to

classify future observations.
a.k.a. discriminant analysis; class prediction; supervised pattern

recognition.




Tumor classification using gene expression data

A reliable and precise classification of tumors is essential for

successful diagnosis and treatment of cancer.

Current methods for classifying human malignancies rely on a
variety of morphological, clinical, and molecular variables.

In spite of recent progress, there are still uncertainties in diagnosis.
Also, it is likely that the existing classes are heterogeneous.

DNA microarrays may be used to characterize the molecular

variations among tumors by monitoring gene expression profiles on

a genomic scale. This may lead to a more reliable classification of

tumors.




Tumor classification using gene expression data

There are three main types of statistical problems associated with

tumor classification:

1.

the identification of new tumor classes using gene expression

profiles — unsupervised learning;

. the classification of malignancies into known classes —

supervised learning;

. the identification of marker genes that characterize the

different tumor classes — feature selection.




Gene expression data

Features correspond to expression levels of different genes; classes

correspond to different tumor types (e.g. ALL, AML) and are
labeled by {1,2,..., K}.

Gene expression data on G genes (features) for n mRNA samples
(observations)

X (%‘1,%2, e 73%'(;)

- gene expression profile / feature vector for sample ¢

Vi tumor class / response for sample 1,
1=1,...,n.

May have covariates such as age, sex.




Gene expression data

Gene expression data on G genes (features) for n mRNA samples
(observations)

mRNA samples
r11  X12

L21 L22

irel| G2 TGn

T4 = gene expression level of gene g in mRNA sample ¢

An array of conormalized arrays.




Filtering

It is generally useful to apply the gene—filtering methods introduced

in a previous lecture prior to using any of the classification
methods presented here — see more specific discussions of feature
selection below.




Standardization and distance functions

Samples are assigned to classes on the basis of their distance

from (or similarity to) objects known to be in the classes.

The distance or similarity measure that is used will have a
large effect on the performance of the classification procedure.

The distance measure and its behavior is intimately related to

the scale on which measurements are made.

These issues are well-known in the classification literature but

there are few methods available for addressing them.




Standardization

For microarray data, we usually have no a priori reason to

favor one gene over another.

Thus, we would like to put all genes on the same footing.
This suggests standardizing the expression levels of each gene.

Two common standardization procedures are

Lgi — Lg

Sg
Lgi — Lg(1)

Lg(n) — Lg(1)

Could use robust estimates of location and scale, like median
and MAD.




Distance functions

Fuclidean distance;
Mahalanobis distance;
Manhattan metric;
Minkowski metric;

Canberra metric;

one minus correlation;

etc.




Unsupervised learning

In classical statistical terminology this is clustering.

Associated with each object is a set of G measurements which form
the feature vector X = (X1,..., Xg). The feature vector X

belongs to a feature space X (e.g. R®).

The task is to identify groups of similar objects on the basis of

observed measurements X = X1,..., X, = X,.




Clustering gene expression data

e We can cluster genes (rows), e.g. using large numbers of
yeast experiments, to identify groups of co-regulated genes.
We can cluster genes (rows) to reduce redundancy (cf. feature
selection) in predictive models.

We can cluster cell samples (cols), e.g. tumor cells, for

identification (profiles). Also, we might want to estimate the
number of different tumor cell types in a set of samples based

on gene expression levels.

e We can cluster both rows and columns at once.




Clustering gene expression data

Clustering leads to readily interpretable figures.

Clustering strengthens the signal when averages are taken

within clusters of genes (Eisen).

Clustering can be helpful for identifying patterns in time or

space.

Clustering is useful, perhaps essential, when seeking new

subclasses of cell samples (tumors, etc).




Clustering gene expression data

Clustering can be usefully employed in an exploratory manner. The
clusters that obtain from clustering samples should be compared

with different experimental conditions such as:
e batch or production order of the arrays;
e batch of reagents;
e technician;

e order.

Any relationships observed here should be considered as potentially

serious.




Example: Row and column clustering

Figure 1: Alizadeh et al. (2000). Distinct types of diffuse large
B—cell lymphoma identified by gene expression profiling. Nature.




Clustering gene expression data

Questions:

e Which genes / arrays to use?

e Which similarity or dissimilarity measure?
e Which clustering algorithm?

Answers will depend on the biological problem.



Partitioning methods

Partition the data into a prespecified number K of mutually

exclusive and exhaustive groups.

Iteratively reallocate the observations to clusters until some

criterion is met, e.g. minimize within cluster sums of squares.

Examples: k—means, partitioning around medoids (PAM),

self-organizing maps (SOM), model-based clustering (e.g.

Gaussian mixtures), fuzzy clustering.

The cluster package in R has many more.




Hierarchical methods

e Hierarchical clustering methods produce a tree or
dendogram.

e They avoid specifying how many clusters are appropriate by

providing a partition for each K obtained from cutting the tree

at some level.

e The tree can be built in two distinct ways
— bottom-up: agglomerative clustering;

— top-down: divisive clustering.




Agglomerative methods

e Start with n mRNA sample (or G gene) clusters.

e At each step, merge the two closest clusters using a measure of
between-cluster dissimilarity which reflects the shape of the

clusters.

e Between-cluster dissimilarity measures:

— Unweighted Pair Group Method with Arithmetic mean

(UPGMA ): average of pairwise dissimilarities;

— Single-link: minimum of pairwise dissimilarities;

— Complete-link: maximum of pairwise dissimilarities.




Divisive methods

Start with only one cluster.

At each step, split clusters into two parts.

Advantages: Obtain the main structure of the data, i.e., focus

on upper levels of dendogram.

Disadvantages: Computational difficulties when considering all

possible divisions into two groups.




Partitioning vs. hierarchical

e Partitioning

— Advantages: Provides clusters that satisfy an optimality

criterion (approximately).

— Disadvantages: Need initial K, long computation time.

e Hierarchical

— Advantages: Fast computation (for agglomerative

clustering).

— Disadvantages: Rigid, cannot correct later for erroneous

decisions made earlier.




Clustering

Important tasks (which are generic) are:

. Estimating the number of clusters;
. Assigning each observation to a cluster;

. Assessing the strength /confidence of cluster assignments for

individual observations;
. Assessing cluster homogeneity.

There are a number of methods available for assessing the number
of clusters in the data. Gordon (1996) discusses many of them.
Recent additions are the Gap statistic proposed by Tibshirani et al.
(2000) and the Clest procedure of Fridlyand & Dudoit (2001).




Supervised learning

Certain objects are to be classified as belonging to one of a number

of predefined classes, say, {1,2,..., K} (incl. doubt or outlier

classes).

Associated with each object are a class label or response
Y €{1,2,..., K} and a set of G measurements which form the
feature vector or vector of predictor variables

X = (X1,...,Xg). The feature vector X belongs to a feature space
X (e.g. RC).

The task is to classify an object into one of the K classes on the
basis of an observed measurement X = x, i.e., predict Y from X.




Classifiers

A classifier or predictor for K tumor classes partitions the
space X of gene expression profiles into K disjoint and exhaustive
subsets, A1,..., Ak, such that for a sample with expression profile
x = (x1,...,xq) € Ay the predicted class is k.

Classifiers are built from past experience, i.e., from observations
which are known to belong to certain classes. Such observations

comprise the learning (training) set (LS)

L= {(leyl)v SRR (Xnayn)}'

Classifier built from a learning set L:
C,L): X —-{1,2,... K}

Predicted class for an observation x: C'(x, L) = k if x € Ay.




Decision theory

Classification can be viewed as statistical decision theory. For
each object, we need to decide which of the fixed set of classes that
object belongs to. We use the observed feature vector x to aid in
that decision.

Assume observations are i.i.d. from an unknown multivariate
distribution. The proportion of objects of class k in the population
will be denoted as 7 = p(Y = k). Objects in class k£ have feature
vectors with density pr(x) = p(x|Y = k).

When (unrealistically) both 7 and px(x) are known this problem

has a solution. This situation also gives upper bounds on the
performance of classifiers in the more realistic setting where these
quantities are not known (cf. Bayes rule and Bayes risk).




Decision theory

A reasonable criterion for assessing the quality of a classifier is the
misclassification rate, p(C(X) #Y).

It will be useful to introduce the notion of a loss function. The

loss function L(i, j) simply elaborates the loss incurred if a class ¢

case is erroneously classified as belonging to class j.

The risk function for a classifier is the expected loss when using it
to classify: R(C') = E[L(Y,C(X))].




Decision theory

Typically L(i,7) = 0, and in many cases the loss is symmetric with

L(i,j) =1, ¢ # 7 — making an error of one type is equivalent to

making an error of a different type.

Then, the risk is simply the misclassification probability. The
Bayes rule to be introduced below minimizes this risk.

However, for some important examples such as diagnosis, the loss

function is not symmetric.




Bayes rule

For known class conditional densities px(x) = p(x|Y = k) and class
priors 7, let

p(k | %) TPk (X)

N El TPl (X)

denote the posterior probability of class k£ given feature vector x.

The Bayes rule predicts the class of an observation x by that with
highest posterior probability: C'(x) = argmax, p(k | x).




Bayes rule

The Bayes rule minimizes the total risk under a symmetric loss

function - Bayes risk.

Suitable adjustments can be made for other loss functions and to

accommodate the doubt and outlier classes.

Many classifiers can be viewed as versions of this general rule with

particular parametric or non-parametric estimates of p;(x) and 7y

used to yield an estimate of p(k | x).




Maximum likelihood discriminant rule

For known class conditional densities pg(x) = p(x|Y = k), the
maximum likelihood (ML) discriminant rule predicts the
class of an observation x by that which gives the largest likelihood

to x: C(x) = argmax; pr(x).

In the case of equal class priors 7, this amounts to maximizing the

posterior class probabilities p(k|x), i.e., the Bayes rule.




Fisher linear discriminant analysis

First applied in 1935 by M. Barnard at the suggestion of R. A.
Fisher (1936), Fisher linear discriminant analysis (FLDA)

consists of

1. finding linear combinations x a of the gene expression profiles

x = (x1,...,xq) with large ratios of between-group to

within-group sums of squares - discriminant variables;

. predicting the class of an observation x by the class whose
mean vector is closest to x in terms of the discriminant

variables.




Gaussian maximum likelihood discriminant rules

For multivariate Gaussian class densities, i.e., for
XY =k ~ N(ug,Xr) the maximum likelihood classifier is

C(x) = argmin;, {(x — pp)Xy ' (x — px)’ + log |Sk| } -

In general, this is a quadratic rule: Quadratic discriminant
analysis - QDA..

In practice, population mean vectors and covariance matrices are

estimated by corresponding sample quantities, x5 and S}, resp.




Gaussian maximum likelihood discriminant rules

1. When the class densities have the same covariance matrix,
Y. = X, the discriminant rule is based on the square of the

Mahalanobis distance from class means and is linear
C(x) = argmin,, (x — pup)S " (x — i)’
Linear discriminant analysis - LDA; FLDA for K = 2.

2. In this simplest case, when the class densities have the same
diagonal covariance matrix A = diag(c?,...,0%), the

discriminant rule is linear and given by

C'(x) = argminy Z 'ukg

Diagonal linear discriminant analysis - DLDA.




Weighted gene voting of Golub et al. (1999)

This is a minor variant on DLDA for two classes, k£ =1, 2.

Sample DLDA classifies an observation x as 1 iff

Z ng (xg (T +f2g)) -
5 > 0.

g=1

The discriminant function can be rewritten as ) | vy, where

Vg = ag(xg —bg), ag = (T1g — 5729)/337 and by = (T1g + T24)/2.

In Golub et al. a;, = (Z14 — T2g)/ (514 + S24) ... (Wrong units).




Logistic discrimination

For Gaussian class conditional densities with common covariance
matrix (and other models)

log p(k|x) —log p(1|x) = o + X[

This suggests modeling log p(k|x) — log p(1|x) more generally by
some parametric family of functions, say gi(x;6) (with
g1(x;0) = 0). Then we estimate

_ expgi(x;0)
D1 €xp gi(x;0)

Classification is done by using the (estimated) Bayes rule, i.e.,

L —

p(k|x) =

C'(x, L) = argmax; p(k|x).




Logistic discrimination

In the machine learning literature the function expay/ ), expa; is

known as the softmax function, in earlier statistical literature, it is

known as the multiple logit function.

In logistic regression, take gi(x;0) = ax + x0.

Logistic discrimination provides a more direct way of estimating
posterior probabilities (Bayes rule). It is also easier to generalize

than classical linear discriminant analysis.




Nearest neighbor classifiers

Nearest neighbor methods are based on a measure of distance
between observations, such as the Euclidean distance or one minus

the correlation between two gene expression profiles.

The k nearest neighbor rule, due to Fix and Hodges (1951),

classifies an observation x as follows:
1. find the k£ observations in the learning set that are closest to x;

2. predict the class of x by majority vote, i.e., choose the class

that is most common among those k observations.

The number of neighbors k can be chosen by cross-validation.




Nearest neighbor classifiers

Nearest neighbor classifiers were initially proposed by Fix and
Hodges (1951) as consistent non-parametric estimates of maximum
likelihood discriminant rules.

Non-parametric estimates of the class conditional densities py(x)

are obtained by first reducing the dimension of the feature space X

from G to one using a distance function.

The proportions of neighbors in each class are then used in place of
the corresponding class conditional densities in the maximum

likelihood discriminant rule.




Classification trees

Binary tree structured classifiers are constructed by repeated
splits of subsets (nodes) of the measurement space X into two
descendant subsets, starting with X itself. Each terminal subset is
assigned a class label and the resulting partition of X’ corresponds
to the classifier.

Three main aspects of tree construction: (i) the selection of the
splits; (ii) the decision to declare a node terminal or to continue
splitting; (iii) the assignment of each terminal node to a class.

Different tree classifiers use different approaches to deal with these
three issues. Here, we use CART - Classification And

Regression Trees - of Breiman et al. (1984).




Classification trees

1. Splitting rule. At each node, choose split that maximizes the
decrease in impurity.

E.g. of impurity functions: Gini index of diversity

i(t) = ). 4; p(2]t)p(jlt), also entropy and twoing rule.

. Split-stopping rule. Grow large tree, selectively prune the tree
upward, getting a decreasing sequence of subtrees, then use
cross-validation to identify the subtree having the lowest

estimated misclassification rate.

. Class assignment rule. For each terminal node, choose the class
that minimizes the resubstitution estimate of the misclassification

probability, given that a case falls into this node.

Refinements: priors, weighted cost, splits based on linear combinations of

variables, missing values (surrogate splits).




Example: Linear discriminant analysis

Iris: LDA

Sepal.Width

Sepal.Length
Resubsitution error = 0.2

Figure 2: Iris dataset (Fisher 1936): Linear discriminant analysis
using sepal length and width.




Example: Quadratic discriminant analysis

Iris: QDA

Sepal.Width

Sepal.Length
Resubsitution error = 0.2

Figure 3: Iris dataset (Fisher 1936): Quadratic discriminant analysis
using sepal length and width.




Example: Nearest neighbor classifier

Iris: Nearest neighbor, k=1 Iris: Nearest neighbor, k=5

Sepal.Width
Sepal.Width

e ) N R R
45 5.0 55 6.0 6.5 7.0 75 8.0

Sepal.Length Sepal.Length
Resubsitution error = 0.07 Resubsitution error = 0.16

Iris: Nearest neighbor, k=10 Iris: Nearest neighbor, k=50

Sepal.Width
Sepal.Width

6.0 6.5 7.0 75 8.0 . 0 6.5 7.0 75 8.0

Sepal.Length Sepal.Length
= sitution error =

Resubsitution error = 0.17 Resub: 0.17

Figure 4: Iris dataset (Fisher 1936): & = 1, 5, 10, 50 nearest
neighbor classifier, using sepal length and width.




Example: Classification tree

Figure 5: Iris dataset (Fisher 1936): classification tree (10-fold CV),
using sepal length and width.




Other classifiers

Perceptron;
Neural networks;

Support vector machines (SVMs);

Learning vector quantization (LVQ).




Standardization and distance functions

We noted previously that both distance and the scale that
observations are measured on are important. Some classifiers
further modify the distance function.

e Linear or quadratic discriminant analysis. Based on the
Mahalanobis distance from class means, thus features are
already standardized in some sense. Is this an appropriate
standardization?

Nearest neighbor classifiers. One must decide on
appropriate standardization and distance function for the

problem under consideration.

Classification trees. Invariant under monotone

transformations of individual features, e.g. standardizations

introduced above.




Asymmetric losses

e In many diagnosis settings, the loss incurred from

misclassifying a diseased (d) person as healthy (h) far

outweighs the loss incurred by making the error of classifying a
healthy person as diseased.

In this case, we must modify our loss function. The simple
expedient of stating that the first error is e times higher than
the second yields a plug-in decision rule. Classify a patient as

diseased if p(d | x) > c=1/(1 + e).

Again, we can use any estimate of the class posterior
probabilities.




Assymetric class sample sizes

e In many situations, such as medical diagnosis, the
representation of the classes in the learning set does not reflect
their importance in the problem.

For example, in a binary classification problem with a rare
disease class (d) and a common healthy class (h), a learning
set obtained by random sampling from the population would
contain a vast majority of healthy cases.

Unequal class sample sizes could possibly lead to serious biases

in the estimation of posterior probabilities p(d | x) and p(h | x).




Assymetric class sample sizes

Consider the case of linear discriminant analysis which assumes a
common covariance matrix estimated using both samples. This

estimate will be dominated by the more abundant sample.

This is fine if the covariance matrix is really the same for both

classes. However, in the case of unequal covariance matrices, the

bias in the class posterior probabilities p(k | x) is more severe when

the classes are unequally represented in the learning set.




Biased sampling of classes

Here are some suggestions that might help to alleviate biases from
unequal class representation in the learning set.

e Subsample the abundant population so that both classes are on
an equal footing in the parameter estimation, thus reducing
estimation biases.

Problem: this would be wasteful of training data when the
biased learning set is obtained from a larger learning set.

Downweight cases from the abundant class so that the sum of

the weights is equal to the number of cases in the less abundant

class.

Obtain less biased estimates of the class posterior probabilities,
either by theory (as can be done for LDA) or via bias reduction
techniques such as the jackknife.




Biased sampling of classes

N.B. The above solutions effectively make the sample proportions
differ from the population proportions and can in turn lead to
biased estimates of the class posterior probabilities.

To see this, let n;. denote the number of class k cases in the
learning set. The plug-in estimators of class posterior probabilities

are in fact estimating quantities proportional to p(k | x)nk /7.

Adjustment is thus required to ensure that our preferred estimator
of the class posterior probabilities p(k | x) is approximately
unbiased.

This can be done by specifying appropriate priors for DA and
CART, and by using weighted voting for nearest neighbors.




Features

e Feature selection. Automatic with trees, no need to preselect
features (no over-fitting).
For DA and nearest neighbor classifiers one should perform
preliminary feature selection, otherwise performance degrades

with a large number of uninformative features.

Must take this into account when estimating error rates;
feature selection is an aspect of building the predictor (cf.

performance assessment below).

Missing data. Automatic imputation with trees; for other
classifiers either ignore missing data or use imputed data (e.g.

nearest neighbor imputation).




Performance assessment

1. Resubstitution estimation. Error rate on the learning set.
Problem: can be severely biased downward.

. Test set estimation. Cases in the learning set £ are divided
into two sets, £1 and Ls; classifier is built using £; and error
rate is computed for Ls.

Must ensure that £ and Lo are i.i.d.: e.g.

two-thirds/one-third repeated random sampling.

Problem: reduces effective sample size.




Performance assessment

3. V-fold cross-validation (CV) estimation. Cases in L are
randomly divided into V subsets £,, v =1,...,V, of as nearly
equal size as possible. Classifiers are built on £ — £, test set

error rates are computed for £,, and averaged over v.

Special case V = n, leave-one-out cross-validation (LOOCYV).

More computation with V' = n.

Bias-variance trade-off: taking a smaller V' can give a larger

bias, but a smaller variance and mean-square error.

. Out-of-bag estimation. See discussion of random forests

below.




Performance assessment

The use of cross—validation (or any other process) is intended to
provide accurate estimates of the classification error rate.

N.B. These estimates relate only to the experiment that was

(cross-) validated.




Performance assessment

There is a common practice in this area of doing feature selection
using all of the data and then using cross—validation only on the
model building and classification portion.

In that case, inference can only be applied to the latter portion of
the process.

However, in most cases, the features are unknown and the intended
inference includes feature selection. Then, CV estimates as above
tend to suffer from a downward bias and inference is not warranted.

Features should be selected only on the basis of the learning set £4

for test set estimation or the samples in £ — £, for CV estimation.




Performance assessment

Building a classifier can be viewed as model building. In that sense,
we are attempting to make inference about the parameters in a
model. In many cases these parameters have standard errors that

are proportional to 1/4/n.

If we use leave—one—out cross—validation, we are perturbing the
data by amount 1/n. This means that we are trying to make
inference about the parameters from perturbations that are much
smaller than the variability in the parameters.

It would probably be beneficial to consider leaving out more
observations (e.g. V = 10). This can give larger bias, but smaller

variance and mean-square error.

Some form of stratified sampling may need to be carried out to
ensure balance across important classes in all samples.




Aggregating classifiers

Breiman (1996, 1998) found that gains in accuracy could be
obtained by aggregating predictors built from perturbed
versions of the learning set. In classification, the multiple versions
of the predictor are aggregated by voting.

Let C(-, Ly) denote the classifier built from the bth perturbed
learning set £ and let w;, denote the weight given to predictions
made by this classifier. The predicted class for an observation x is
given by

argmaxy, Z wy I(C(x,Ly) = k).
b

Key to improved accuracy: instability of classifier.




Bagging

Standard bagging. In the simplest form of bagging - bootstrap
aggregating - perturbed learning sets of the same size as the
original learning set are non-parametric bootstrap replicates of the
learning set, i.e., drawn at random with replacement from the

learning set.

Predictors are built for each perturbed dataset and aggregated by

plurality voting (wp = 1).

Parametric bootstrap. Perturbed learning sets are generated

according to a mixture of multivariate Gaussian distributions.

Convex pseudo-data. Breiman (1996).




Random forests

Random forest. A combination of tree classifiers (or other),
where each tree depends on the value of a random vector, i.i.d. for
all trees in the forest.

¢ Random learning set - bagging. Each tree is formed from a
bootstrap sample of the learning set (same size) — random
vector consists of the outcomes of n draws at random with

replacement from {1,...,n}

Random features. For a fixed parameter Gy << G (e.g.

V@G), Gy features are randomly selected at each node and only

these are searched though for the best split — random vector
consists of the outcomes of GGy draws at random without
replacement from {1,...,G}.




Random forests

e Random forest. Combine above two sources of randomness.

A maximal exploratory tree is grown (pure terminal nodes) for each

bootstrap learning set and the forest obtains a classification by

plurality voting.




By-products of aggregation

I. Out-of-bag estimate of error rate. No need for CV or test
set estimates of error rate; an unbiased estimate is obtained as a
by-product of the bootstrap.

For each bootstrap sample, about 1/3 of the cases are left out and

not used in the construction of the tree = test set.

For the bth bootstrap sample, put the “out-of-bag” cases down the
bth tree to get a test set classification. Let the final test set
classification of the forest be the class having the most votes.
Compare this classification to the class labels of the learning set to

get the out-of-bag estimate of the error rate.




By-products of aggregation

II. Case-wise information.

o Class probability estimates (Votes): the proportion of votes for
the “winning” class (€ [0, 1]).

This gives a measure of confidence for the prediction.

Vote margins: the proportion of votes for the true class minus
the maximum of the proportion of votes for each of the other
classes (€ [—1,1]).

Vote margins can be used to detect mislabeled learning set

cases.




By-products of aggregation

II1. Variable importance statistics. Here, variable importance
is defined in terms of the contribution to predictive accuracy, i.e.,

predictive power.

For each tree, randomly permute the values of the jth variable for
the out-of-bag cases, put these new covariates down the tree, and

get new classifications for the forest.




By-products of aggregation

The importance of the jth variable can be defined as

e [mportance measure 1: the difference between the out-of-bag
error rate for randomly permuted jth variable and the original

out-of-bag error rate.

e [mportance measure 2: the average across all cases of the
differences between the margins for randomly permuted jth
variable and for the original data.

e [mportance measure 3: the number of lowered margins minus

the number of raised margins.

e [mportance measure 4: sum of all decreases in impurity in the

forest due to a given variable, normalized by number of trees.




By-products of aggregation

e IV. Intrinsic proximities between cases. Proportion of
trees for which cases ¢ and j are in the same terminal node.

— Clustering;

— Multidimensional scaling;

— Outlier detection: 1/(sum of squared proximities of cases in

same class).




Boosting

Freund and Schapire (1997), Breiman (1998).

The data are resampled adaptively so that the weights in the
resampling are increased for those cases most often misclassified.

The aggregation of predictors is done by weighted voting.




Boosting

For a learning set £ = {(x1,v1),---, (Xn,yn)}, let
{p1,...,pn} denote the resampling probabilities,

initialized to be equal.

For bth step of the boosting algorithm (adaptation of
AdaBoost):

1. generate a perturbed learning set L; of size n by

sampling with replacement from £ using
{p17 <o ,pn};
. build a classifier C'(-, L) based on Ly;

. run the learning set £ through the classifier
C(-,Lp) and let d; = 1 if the ith case is classified

incorrectly and d; = 0 o.w.;

. define

€p — Z pidi, ﬁb = (1 — eb)/eb and Wp = log(ﬁb)

and update the resampling probabilities for the
(b + 1)st step by

piBY
— T
Zi piﬁb

Di =

69



Comparison of classifiers

Ref. S. Dudoit, J. Fridlyand, and T. P. Speed. (2002). Comparison of
discrimination methods for the classification of tumors using gene expression
data. JASA. Vol. 97, No. 457.
e Linear and quadratic discriminant analysis
— Fisher linear discriminant analysis (FLDA);

— Diagonal linear discriminant analysis (DLDA)

— gene voting scheme of Golub et al. is a variant of DLDA;

— Diagonal quadratic discriminant analysis (DQDA);
e Nearest neighbor classifiers;

e Classification trees (CART);
e Bagging and boosting.

Other studies: Support vector machines (SVMs), penalized logistic

regression, Bayesian regression analysis.




Comparison study - datasets

e Lymphoma. Alizadeh et al. (2000).
n = 81 samples, p = 4, 682 genes,
3 classes (B-CLL, FL, DLBCL).

Leukemia. Golub et al. (1999).
n = 72 samples, p = 3,571 genes,
3 classes (B-cell ALL, T-cell ALL, AML).

NCI 60. Ross et al. (2000).
n = 64 samples, p = 5, 244 genes,

8 classes.




Comparison study - results

In the main comparison, the nearest neighbor
classifier and DLDA had the smallest error
rates, while FLDA had the highest error rates.

Aggregation improved the performance of
CART, the largest gains being with boosting
and bagging with convex pseudo-data.

For the lymphoma and leukemia datasets,
increasing the number of predictor variables

(genes) didn’t affect much the performance of

the various classifiers. There was an
improvement for the NCI 60 dataset.

A more careful selection of a small number of
genes improved the performance of FLDA
dramatically.
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Comparison study - discussion

“Diagonal’x” LDA vs. “correlated” LDA: ignoring

correlation between genes helped here.

Unlike classification trees and nearest neighbors,
LDA is unable to take into account gene

Interactions.

Although nearest neighbors are simple and
intuitive classifiers, their main limitation is that
they give very little insight into mechanisms

underlying the class distinctions.

Classification trees are capable of handling and

revealing interactions between variables.

Useful by-product of aggregated classifiers: error
rates, prediction votes, variable importance

statistics.

With larger training sets, we expect an
improvement in the performance of aggregated
classifiers and to gain more insight into the
relationship between tumor class and gene

expression levels.
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Discussion

There are two main goals in analyzing the data

e Prediction. Predict response of future observations (tumor

samples) using a collection of predictor variables (genes).

e Information. Extract information about the underlying data
generating mechanism, i.e., on the relationship between

response and predictor variables.




Discussion

Data models: High-dimensional data, unknown distribution, many

models will provide similar predictive accuracy.

Accuracy vs. simplicity (interpretability): a predictor does not have

to be simple to provide accurate prediction or reliable information
about the relationship between response and predictor variables

(e.g. random forests).

Dimensionality: newer classification procedures thrive on the
number of variables, the more the better (trees, SVMs vs. DA,

nearest neighbors).

Ref. L. Breiman (2001). Statistical modeling: the two cultures. Statistical
Science., Vol. 16, No. 3, p. 199-231.




Lab 5

In Lab 5, we will apply the methods introduced in the lecture to

gene expression data from the leukemia study of Golub et al.
(1999).
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