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networks in molecular biology

Regulatory networks:

components = gene products

Interactions =regulation of transcription,

translation, phosphorylation...

Metabolic networks:

components = metabolites, enzymes

Interactions = chemical reactions
Interaction networks:

components = proteins

Interactions = ability to form a complex
...and so on



What might people mean with the term
,hetwork"?

Representation of experimental data
a convenient way to visualize experimentally
observed protein-protein interactions or
correlated occurences of events

Map
a visual tool to navigate through the world of
gene products, proteins, domains, etc.

Predictive Model
like an electronic circuit: a complete description
of causal connections that allows to predict and
engineer the behavior of a biological system,
like that of a radio receiver
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From Gavin et al., Nature 415, 141 (2002)



NY state electric power grid

Blue bars: generators,
substations

Lines: transmission lines,
transformers

— From Strogatz, Nature 410, 268 (2001)
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Aspects of complicatedness

0 Structural complexity (topology)
o Evolution over time
o Connection diversity: weights, directions, function

o Dynamical complexity: nodes themselves can
already be complicated dynamical systems

o0 Node diversity

All of these complications can influence each other



Mathematical tools

o Structural complexity: graph theory

o Dynamical complexity: calculus, theory of
dynamical systems, chaos theory

o Connection diversity, node diversity : differential
equations, graphical networks

o0 Evolution over time: few ideas

All together: computer simulation, data analysis, ....
very little hard results, but lots of excitement.



Simple network topologies

Regular nearest neighbour: 1d, 2d, 3d, ...
All-to-all

Random graph

Scale free



Network topologies

regular all-to-all

Random graph

(after "tidy"
rearrangement of
nodes)




Network topologies

Scale-free

(Albert/Barabasi-model)
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Graphs

Graph := set of nodes + set of edges

Edges can be
- directed

- undirected
- weighted

special cases: cycles, acyclic graphs, trees



Random Edge Graphs

n nodes, m edges
p(.)) = 1/m

with high probability:

m < n/2: many disconnected components

m > n/2: one giant connected component: size ~ n.
(next biggest: size ~log(n)).
degrees of separation: log(n).

Erdds and Renyi 1960



Some important concepts:

Small worlds
Clustering

Degree distribution
Motifs



Small word networks

typical path length (,degrees of separation®) is
short

Many examples:

- Communications

- Epidemiology / infectious diseases
- Metabolic networks

- Scientific collaboration networks

- WWW

- Company ownership in Germany

- ,6 degrees from Kevin Bacon®



Clustering

Cligue: every node connected to everyone else

Clustering coefficient:

o no. edges between first-degree neighbors
maximum possible number of such edges

Random network: c=p
Real networks: ¢ » p



Degree distributions

p(k) = fraction of nodes that have k edges

Random graph: p(k) = Poisson distribution with
some parameter A (,scale”)

Many real networks: p(k) = power law,
p(k) ~ k™

,scale-free”
(WWW: Yahoo, metabolic network: ATP)

Other distributions: exponential, Gaussian



Growth models for scale free networks

Start out with one node and continously add
nodes, with preferential attachment to
existing nodes, with probability ~ degree
of target node.

= p(k)~k3

(Simon 1955; Barabasi, Albert, Jeong 1999)

Modifications to obtain y=3:

Through different rules for adding or
rewiring of edges, can tune to obtain any
kind of degree distribution



What are the functional advantages
(,evolutionary fitness") of scale free networks ?

Robustness: only a few hubs, so insensitive
to the failure of most nodes

However: sensitive to the failure of hubs




Real networks

- tend to have power-law scaling
(truncated)

- are ,small worlds* (like random
networks)

- have a high clustering coefficient
iIndependent of network size (like
lattices and unlike random networks)




Network motifs

.= pattern that occurs more often than in
randomized networks

Intended implications

duplication: useful building blocks are
reused by nature

there may be evolutionary pressure for
convergence of network architectures




Network motifs

Starting point: graph with directed edges

Scan for n-node subgraphs (n=3,4) and count
number of occurence

Compare to randomized networks

(randomization preserves in-, out- and
In+out- degree of each node, and the
frequencies of all (n-1)-subgraphs)




Schematic view of motif detection

randomized networks

real network




All 3-node connected subgraphs
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Transcription networks

transcription
network

X—Y represents @ @
o/ A/

genex geney

Nodes = transcription factors

Directed edge: X regulates transcription of Y




3- and 4-node motifs in transcription networks

Network Nodes

Gene regulation
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System-size dependence

Extensive variable: proportional to system size.
E.g. mass, diameter, number of molecules

Intensive variable: independent of system size.
E.g. temperature, pressure, density,
concentration

,Vanishing variable": decreases with system
size. E.g. Heat loss through radiation; in a city,
probability to bump into one particular person

Alon et al.: In real networks, number of
occurences of a motif iIs extensive. In
randomized networks, It IS hon-extensive.



Examples

Yeast-2-Hybrid
Rosetta compendium
Regulatory networks

TAP: Tandem-Affinity-Purification




Two-hybrid screen

Transcription factor

DNA
binding
domain

activation
domain

promoter

ldea:

, Make potential pairs of interacting
proteins a transcription factor for a
reporter gene”



Two-hybrid screen

(a)

Test tube

Mate, plate diploid cells
on selective media

Fick colonies,
— isclate DNA,
sequence

—His plate



Two-hybrid arrays

384-Pin replica tool

1 Bait + 384 AD-ORF Two-hybrid selective
diploids plate

FEEEET
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IEEEgaE

Current Opinion in Chemical Biology

Colony array:
each colony expresses a defined pair of proteins



Table 2.

Two-hybrid array screens discussed in this paper.

Organism Project Proteins* Assays* Interactions* Refs
Drosophila Cell cycle proteins 13 45 19 [7]

C. elegans Vulva development 29 841 8’ [9]
Mouse Whole-genome pilot ~3500 ~12>x10° 145 [157]
HCV Whole genome 10 ~100 0/3! [18]
Vaccinia Whole genome 266 ~B4 000 37 [17]
Yeast One by one array 192 ~1 150 000 281 [187]
Yeast Pool by pool ~B000 ~36 000 D00 4549/841* [19,207]
Yeast Cell polarity 68 ~408 000 191 [10]
Yeast Proteasome 31 ~186 000 55 [12]




Sensitivity, specificity and reproducibility

Specificity — false positives: the experiment
reports an interaction even though is really
none

Sensitivity — false negatives: the experiment
reports no interaction even though is really
one

Problem: what is the objective definition of an
Interaction?

(Un)reproducibility: the experiment reports
different results when it is repeated

» 1The molecular reasons for that are not really
understood...“ (Uetz 2001)




Reproducibility
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300 mutations or chemical treatments

Rosetta compendium
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Transcriptional regulatory networks
from "genome-wide location analysis”
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106 strains, each Chromatin IP to enrich Microarray to identify
with a tagged promoters bound promoters bound
regulator by regulator in vivo by regulator in vivo
regulator .= atranscription factor (TF) or aligand of a TF
tag: c-myc epitope

106 microarrays

samples: enriched (tagged-regulator + DNA-promoter)
probes: cDNA of all promoter regions

spot intensity ~ affinity of a promotor to a certain regulator



Transcriptional regulatory networks
bipartite graph

106 regulators (TFs)

regulators

1

promoters

6270 promoter regions




Autoregulation
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SWIs

Network motifs

Regulator Chain
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