Exploratory data analysis for microarray data

Anja von Heydebreck

Max–Planck–Institute for Molecular Genetics, Dept. Computational Molecular Biology, Berlin, Germany

heydebre@molgen.mpg.de

Outline

O Goals

O Cluster analysis
Distance measures
Clustering methods

- O Projection methods
- O Class discovery

Exploratory data analysis/unsupervised learning

O "Look at the data"; identify structures in the data and visualize them.

O Can we see biological/experimental parameters; are there outliers?

• Find groups of genes and/or samples sharing similarity.

O Unsupervised learning: The analysis makes no use of gene/sample annotations.

Clustering

Aim: Group objects according to their similarity.

Clustering gene expression data

O Clustering can be applied to rows (genes) and/or columns (samples/arrays) of an expression data matrix.

O Clustering may allow for reordering of the rows/columns of an expression data matrix which is appropriate for visualization (heatmap).

Clustering genes

Aims:

• identify groups of co-regulated genes

O identify typical spatial or temporal expression patterns (e.g. yeast cell cycle data)

O arrange a set of genes in a linear order which is at least not totally meaningless

Clustering samples

Aims:

O detect experimental artifacts/bad hybridizations (quality control)

O check whether samples are grouped according to known categories (meaning that these are clearly visible in terms of gene expression)

• identify new classes of biological samples (e.g. tumor subtypes)

Clustering: Distance measures

• Aim: Group objects according to their similarity.

 O Clustering requires a definition of distance between the objects, quantifying a notion of (dis)similarity. After this has been specified, a clustering algorithm may be applied.

O The result of a cluster analysis may strongly depend on the chosen distance measure.

Metrics and distances

A metric d is a function satisfying:

- 1. non-negativity: $d(a, b) \ge 0$;
- **2.** symmetry: d(a, b) = d(b, a);
- **3.** d(a, a) = 0.
- 4. definiteness: d(a, b) = 0 if and only if a = b;
- 5. triangle inequality: $d(a, b) + d(b, c) \ge d(a, c)$.

A function only satisfying 1.-3. is called a distance.

Distance measures: Examples

Vectors $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$

- O Euclidean distance: $d_M(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- O Manhattan distance: $d_E(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^n |x_i y_i|$

• One minus Pearson correlation:

$$d_C(\boldsymbol{x}, \boldsymbol{y}) = 1 - \frac{\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})(y_i - \bar{\boldsymbol{y}})}{(\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})^2)^{1/2} (\sum_{i=1}^n (x_i - \bar{\boldsymbol{x}})^2)^{1/2}}$$

Distance measures/standardization

• The correlation distance is invariant wrt shifting and scaling of its arguments:

$$d_C(\boldsymbol{x}, \boldsymbol{y}) = d_C(\boldsymbol{x}, a\boldsymbol{y} + b), a > 0.$$

• One may apply standardization to observations or variables:

$$oldsymbol{x}\mapsto rac{oldsymbol{x}-oldsymbol{ar{x}}}{\sigma(oldsymbol{x})},$$

• The correlation distance and the Euclidean distance between standardized vectors are closely related:

$$d_E(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{2nd_C(\boldsymbol{x}, \boldsymbol{y})}.$$

Distances between clusters

Extend a distance measure d to a measure of distance between clusters.

○ Single linkage The distance between two clusters is the minimal distance between two objects, one from each cluster.

O Average linkage The distance between two clusters is the average of the pairwise distance between members of the two clusters.

O Complete linkage The distance between two clusters is the maximum of the distances between two objects, one from each cluster.

O Centroid linkage The distance between two clusters is the distance between their *centroids*.

Hierarchical clustering

O Build a cluster tree/dendrogram, starting from the individual objects as clusters.

○ In each step, merge the two clusters with the minimum distance between them - using one of the above linkage principles.

• Continue until everything is in one cluster.

O If you want a partition of the set of objects, cut the tree at a certain height.

O R function hclust in package mva.

Hierarchical clustering, example

Golub data, 150 genes with highest variance

Cluster Dendrogram

d hclust (*, "average")

k-means clustering

O User specifies the number k of desired clusters. Input: Objects given as vectors in n-dimensional space (Euclidean distance is used).

 \bigcirc For an initial choice of k cluster centers, each object is assigned to the closest of the centers.

O The centroids of the obtained clusters are taken as new cluster centers.

• This procedure is iterated until convergence.

How many clusters?

Many methods require the user to specify the number of clusters.
Generally it is not clear which number is appropriate for the data at hand.

O Several authors have proposed criteria for determining the number of clusters, see Dudoit and Fridlyand 2002.

O Sometimes there may not be a clear answer to this question - there may be a hierarchy of clusters.

Which scale, which distance measure to use for clustering?

O Data should be normalized and transformed to appropriate scale before clustering (\log or generalized \log (R package vsn)).

O Clustering genes: Standardization of gene vectors or the use of the correlation distance is useful when looking for patterns of relative changes - independent of their magnitude.

 O Clustering samples: Standardizing genes gives relatively smaller weight for genes with high variance across the samples
not generally clear whether this is desirable.

Gene filtering (based on intensity/variability) may be reasonable
also for computational reasons.

Some remarks on clustering

• A clustering algorithm will always yield clusters, whether the data are organized in clusters or not.

O The bootstrap may be used to assess the variability of a clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

 If a class distinction is not visible in cluster analysis, it may still be accessible for supervised methods (e.g. classification).

Visualization of similarity/distance matrices

Matrix of correlation coefficients, rows/columns ordered by array batch.

Projection methods

O Map the rows and/or columns of the data matrix to a plane such that similar rows/columns are located close to each other.

Different methods (principal component analysis, multidimensional scaling, correspondence analysis) use different notions of similarity.

PCA, Golub data

Principal component analysis

O Imagine k observations (e.g. tissue samples) as points in n-dimensional space (here: n is the number of genes).

O Aim: Dimension reduction while retaining as much of the variation in the data as possible.

• Principal component analysis identifies the direction in this space with maximal variance (of the observations projected onto it).

• This gives the first principal component (PC). The i + 1st PC is the direction with maximal variance among those orthogonal to the first *i* PCs.

• The data projected onto the first PCs may then be visualized in scatterplots.

Principal component analysis

 \bigcirc PCA can be explained in terms of the eigenvalue decomposition of the covariance/correlation matrix Σ :

$$\Sigma = S\Lambda S^t$$
,

where the columns of S are the eigenvectors of Σ (the principal components), and Λ is the diagonal matrix with the eigenvalues (the variances of the principal components).

O Use of the correlation matrix instead of the covariance matrix amounts to standardizing variables (genes).

O R function prcomp in package mva

PCA, Golub data

variances of PCs

Multidimensional scaling

O Given an $n \ge n$ dissimilarity matrix $D = (d_{ij})$ for n objects (e.g. genes or samples), multidimensional scaling (MDS) tries to find n points in Euclidean space (e.g. plane) with a similar distance structure $D' = (d'_{ij})$ - more general than PCA.

 \bigcirc The similarity between D and D' is scored by a stress function.

O Least-squares scaling: $S(D, D') = (\sum (d_{ij} - d'_{ij})^2)^{1/2}$. Corresponds to PCA if the distances are Euclidean. In R: cmdscale in package mva.

O Sammon mapping: $S(D,D') = \sum (d_{ij} - d'_{ij})^2/d_{ij}$. Puts more emphasis on the smaller distances being preserved. In R: sammon in package MASS.

Projection methods: feature selection

• The results of a projection method also depend on the features (genes) selected.

• If those genes are selected that discriminate best between two groups, it is no wonder if they appear separated.

O This may also happen if there is no real difference between the groups.

Projection methods: feature selection

Left: PCA for a 5000 x 50 random data matrix. For the right plot, 90 "genes" with best discrimination between red and black (t-statistic).

Correspondence analysis: Projection onto plane

Correspondence analysis: Properties of projection

- Similar row/column profiles (small χ²distance) are projected close to each other.
- A gene with positive/negative association with a sample will lie in the same/opposite direction from the centroid.

Projection methods: Correspondence analysis

O Correspondence analysis is usually applied to tables of frequencies (contingency tables) in order to show associations between particular rows and columns – in the sense of deviations from homogeneity, as measured by the χ^2 -statistic.

• Data matrix is supposed to contain only positive numbers - may apply global shifting to achieve this.

O R packages CoCoAn, multiv.

Correspondence analysis - Example

Contingency table of differentially expressed genes

	right ventricular hypertrophy	tetralogy of Fallot	atrium/ ventricle
stress response	11	8	9
constituent of muscle	7	29	20
constituent of ribosome	9	20	8
cell proliferation	7	7	5
signal transduction	14	25	11
metabolism	38	66	44
cell motility	5	12	12
	•••	•••	•••

Correspondence analysis

Association between Gene Ontology categories and tissue/disease phenotypes

ISIS - a class discovery method

- O Aim: detect subtle class distinctions among a set of tissue samples/gene expression profiles (application: search for disease subtypes)
- O Idea: Such class distinctions may be characterized by differential expression of just a small set of genes, not by global similarity of the gene expression profiles.
- The method quantifies this notion and conducts a search for interesting class distinctions in this sense.
- O R package ISIS available at
- http://www.molgen.mpg.de/~heydebre

References

O Duda, Hart and Stork (2000). Pattern Classification. 2nd Edition. Wiley.

O Dudoit and Fridlyand (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. *Genome Biology*, Vol. 3(7), research 0036.1-0036.21.

O Eisen et al. (1998). Cluster analysis and display of genome-wide expression patterns. *PNAS*, Vol 95, 14863–14868.

O Fellenberg et al. (2001): Correspondence analysis applied to microarray data. *PNAS*, Vol. 98, p. 10781–10786.

• v. Heydebreck et al. (2001). Identifying splits with clear separation: a new class discovery method for gene expression data. *Bioinformatics*, Suppl. 1, S107–114.

O Kerr and Churchill (2001). Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. *PNAS*, Vol. 98, p. 8961-8965.

O Pollard and van der Laan (2002). Statistical inference for simultaneous clustering of gene expression data. *Mathematical Biosciences*, Vol. 176, 99-121.