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Exploratory data analysis/unsupervised learning

[] “Look at the data”; identify structures in the data and visualize
them.

[1 Can we see biological/experimental parameters; are there
outliers?

[1 Find groups of genes and/or samples sharing similarity.

[J Unsupervised learning: The analysis makes no use of
gene/sample annotations.



Clustering

Aim: Group objects according to their similarity.
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Clustering gene expression data

[1 Clustering can be applied to rows (genes) and/or columns
(samples/arrays) of an expression data matrix.

[1 Clustering may allow for reordering of the rows/columns of
an expression data matrix which is appropriate for visualization

(heatmap).



Clustering genes

Aims:
[1 identify groups of co-regulated genes

[1 identify typical spatial or temporal expression patterns (e.g. yeast
cell cycle data)

[1 arrange a set of genes in a linear order which is at least not
totally meaningless



Clustering samples

Aims:

[1 detect experimental artifacts/bad hybridizations (quality control)
[1 check whether samples are grouped according to known
categories (meaning that these are clearly visible in terms of gene

expression)

[1 identify new classes of biological samples (e.g. tumor subtypes)



Clustering: Distance measures

[1 Aim: Group objects according to their similarity.

[1 Clustering requires a definition of distance between the objects,
guantifying a notion of (dis)similarity. After this has been specified,
a clustering algorithm may be applied.

[ The result of a cluster analysis may strongly depend on the
chosen distance measure.



Metrics and distances

A metric d Is a function satisfying:

. hon-negativity: d(a, b) > 0;

. symmetry: d(a,b) = d(b, a);

. d(a,a) = 0.

. definiteness: d(a,b) = 0 if and only if a = b;
. triangle inequality: d(a,b) 4+ d(b,c) > d(a, c).

A function only satisfying 1.-3. is called a distance.



Distance measures: Examples

Vectors ¢ = (1, .., %n), Y = (Y1,-- - Yn)

0 Euclidean distance: dy;(z,y) = /> (2 — y;)?
0 Manhattan distance: dg(x,y) = >, |z — yil
[1 One minus Pearson correlation:
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Distance measures/standardization

[1 The correlation distance is invariant wrt shifting and scaling of

Its arguments:
do(x,y) = de(x,ay +b),a > 0.

[1 One may apply standardization to observations or variables:

€T — X
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[1 The correlation distance and the Euclidean distance between
standardized vectors are closely related:

dp(x,y) = \/2ndc(a3, Y).




Distances between clusters

Extend a distance measure d to a measure of distance between
clusters.
[1 Single linkage The distance between two clusters is the minimal

distance between two objects, one from each cluster.
[1 Average linkage The distance between two clusters is the

average of the pairwise distance between members of the two

clusters.
[1 Complete linkage The distance between two clusters is the

maximum of the distances between two objects, one from each

cluster.
[1 Centroid linkage The distance between two clusters is the

distance between their centroids.



Hierarchical clustering

[J Build a cluster tree/dendrogram, starting from the individual
objects as clusters.

[1 In each step, merge the two clusters with the minimum distance
between them - using one of the above linkage principles.

[1 Continue until everything is in one cluster.

[ If you want a partition of the set of objects, cut the tree at a
certain height.

[J R function hclust in package mva.



Hierarchical clustering, example

Golub data, 150 genes with highest variance

Cluster Dendrogram

12

Height
6 8§ 10
| | |
AML
AML
AML
ML
ML
AML
AML
I —
o
ALL
AL —
AL —]
ALL
ALL
L j—‘lf
ALL jj_‘
ALL
L ALL
[ H——
~H

—_— R — R — |
= == = - —— o ==
<C<C = —1 <C<T —1
11 — 1 <T<C
== ==
==

hclust (*, "average™)



k-means clustering

[1 User specifies the number k of desired clusters. Input: Objects

given as vectors in n-dimensional space (Euclidean distance is
used).

[1 For an initial choice of & cluster centers, each object is assigned
to the closest of the centers.

[1 The centroids of the obtained clusters are taken as new cluster
centers.

[1 This procedure is iterated until convergence.



How many clusters?

[1 Many methods require the user to specify the number of clusters.
Generally it is not clear which number is appropriate for the data at

hand.

[1 Several authors have proposed criteria for determining the
number of clusters, see Dudoit and Fridlyand 2002.

[1 Sometimes there may not be a clear answer to this question -
there may be a hierarchy of clusters.



Which scale, which distance measure to use for

clustering?

[1 Data should be normalized and transformed to appropriate scale
before clustering (log or generalized log (R package vsn)).

[1 Clustering genes: Standardization of gene vectors or the use
of the correlation distance is useful when looking for patterns of
relative changes - independent of their magnitude.

[1 Clustering samples: Standardizing genes gives relatively
smaller weight for genes with high variance across the samples
- not generally clear whether this is desirable.

[1 Gene filtering (based on intensity/variability) may be reasonable
- also for computational reasons.



Some remarks on clustering
[1 A clustering algorithm will always yield clusters, whether the data
are organized in clusters or not.

[ The bootstrap may be used to assess the variability of a
clustering (Kerr/Churchill 2001, Pollard/van der Laan 2002).

[1 If a class distinction is not visible in cluster analysis, it may still
be accessible for supervised methods (e.g. classification).



Visualization of similarity/distance matrices
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Projection methods

1 Map the rows and/or
columns of the data matrix

PCA, Golub data
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Principal component analysis

[1 Imagine k observations (e.g. tissue samples) as points in n-
dimensional space (here: n is the number of genes).

[1 Aim: Dimension reduction while retaining as much of the
variation in the data as possible.

[I Principal component analysis identifies the direction in this
space with maximal variance (of the observations projected onto
it).

[1 This gives the first principal component (PC). The ¢ + 1st PC is
the direction with maximal variance among those orthogonal to the
first : PCs.

[1 The data projected onto the first PCs may then be visualized in
scatterplots.



Principal component analysis

[1 PCA can be explained in terms of the eigenvalue decomposition
of the covariance/correlation matrix >:

> = SASY,

where the columns of S are the eigenvectors of X (the principal
components), and A is the diagonal matrix with the eigenvalues
(the variances of the principal components).

[1 Use of the correlation matrix instead of the covariance matrix
amounts to standardizing variables (genes).

[1 R function prcomp Iin package mva
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PCA, Golub data
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Multidimensional scaling

[1 Given an n x n dissimilarity matrix D = (d;;) for n objects
(e.g. genes or samples), multidimensional scaling (MDS) tries to
find n points in Euclidean space (e.g. plane) with a similar distance
structure D’ = (d;;) - more general than PCA.

[ The similarity between D and D’ is scored by a stress function.
0 Least-squares scaling: S(D,D’) = (> (dij — dj,)»)Y2
Corresponds to PCA if the distances are Euclidean.

In R: cmdscale in package mva.

0 Sammon mapping: S(D,D’) = 3 (di; — dj;)?/d;;. Puts more
emphasis on the smaller distances being preserved.

In R: sammonin package MASS



Projection methods: feature selection

[1 The results of a projection method also depend on the features
(genes) selected.

[1 If those genes are selected that discriminate best between two
groups, it is no wonder if they appear separated.

[1 This may also happen if there is no real difference between the
groups.



Projection methods: feature selection

PCA, all features PCA, feature selection
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Left: PCA for a 5000 x 50 random data matrix. For the right plot, 90 “genes” with best

discrimination between red and black (t-statistic).



Correspondence analysis:
Projection onto plane
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e Similar row/column

* A gene with

Correspondence analysis:
Properties of projection

profiles (small x4
distance) are projected
close to each other.

positive/negative
association with a
sample will lie in the
same/opposite direction
from the centroid.




Projection methods: Correspondence analysis

[ Correspondence analysis is usually applied to tables of
frequencies (contingency tables) in order to show associations
between particular rows and columns — in the sense of deviations
from homogeneity, as measured by the y*-statistic.

[] Data matrix Is supposed to contain only positive numbers - may
apply global shifting to achieve this.

[1 R packages CoCoAn, multiv
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Correspondence analysis - Example

Golub data
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Contingency table of differentially expressed genes

right ventricular | tetralogy of atrium/
hypertrophy Fallot ventricle
stress response 11 8 9
constituent of 7 29 20
muscle
constituent of 9 20 8
ribosome
cell proliferation 7 7 5
signal transduction | 14 25 11
metabolism 38 66 44
cell motility 5 12 12




Correspondence analysis

Association between Gene Ontology categories and tissue/disease phenotypes
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ISIS - a class discovery method

[1 Aim: detect subtle class distinctions among a set of tissue

samples/gene expression profiles (application: search for disease
subtypes)

[ ldea: Such class distinctions may be characterized by differential
expression of just a small set of genes, not by global similarity of
the gene expression profiles.

[1 The method guantifies this notion and conducts a search for
Interesting class distinctions in this sense.

[ R package ISIS available at
http://www.molgen.mpg.de/"heydebre
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