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Comments

• all the graphs, graphics and statistical methods 
discussed can be produced with BioConductor 
Software

• the paper this talk is based on is titled
Using GO for Statistical Analyses

• it is available in both PDF and compendium 
format
http://bioconductor.org/Docs/Papers/2003/Compendium



BioConductor Software

• rely on graph, Rgraphviz, RBGL, GOstats
• meta-data packages: hgu95av2, GO
• made use of: Biobase, genefilter, multtest, 

xtable, Sweave (tools package)



Ontology

• for our purposes an ontology is a restricted 
vocabulary

• keywords are another restricted vocabulary
• the purpose of these restricted vocabularies 

is to encourage a common usage that while 
not necessarily either entirely correct nor 
comprehensive does aid in both human and 
computer searching



Gene Ontology

• the Gene Ontology (GO) is a collection of 
ontologies (currently three) that describe genes 
and gene products

• these ontologies are restricted vocabularies that 
have the structure of directed acyclic graphs 
(DAGS)

• the most specific terms are the leaves of the graph
• there are edges from more specific terms 

(children) to less specific (parents)





GO

• relationships between parent and child can be 
either “is-a” or “has-a”

• GOA (and others) provide mappings between 
terms and genes

• each gene is mapped to the most specific terms 
that are appropriate

• the other gene-term mapping are determined from 
the GO graph

• for a given gene and ontology the set of all 
appropriate terms is called the induced GO graph



The Ontologies

• MF: molecular function, terms describe what the 
gene/gene product does
– 7280 terms 

• BP: biological process, terms describe the biologic 
objectives (smaller than a pathway bigger than a 
function)
– 8172 terms

• CC: cellular component, terms describe where in 
the cell the gene product resides (works)
– 1388 terms



Why are Ontologies Useful

• P. W. Lord suggests:
Ontologies represent a communities domain 
knowledge in a form that is accessible by 
humans and amenable to computation

• making ontologies more complex does 
make them more descriptive, but at a cost, 
as complexity goes up we can no longer 
compute easily



Practicalities
• GO terms are mapped to LocusLink identifiers by GOA
• they use a variety of evidence codes (basically reasons for 

the mapping)
• GO:0004715 is in the MF ontology and its description is: 

non-membrane spanning tyrosine kinase activity
> get("GO:0004715", GOGO2LL)

IDA     IEA     ISS     ISS    ISS     ISS     ISS     ISS     ISS    NAS 
"2064" "25255" "13548" "14302" "35524" "36442" "37233" "38489" "45821"  "2534" 

NAS     NAS     TAS     TAS     TAS     TAS     TAS     TAS     TAS     TAS 
"32080" "44353"  "1195"  "2185"  "2444"  "3702"  "5753"  "7006" "7294"  "7297" 
TAS 

"8711" 





Microarray Experiments

• mappings from manufacturer’s IDs to LL 
IDs can be many to one

• the data analyst must adjust for this 
multiplicity

• for HGU95av2, has 12625 probe sets

987654321

1811173011749815816756



Statistical Problems

• data reduction
– use GO to reduce the set of genes of interest

• semantic associations
– use GO to provide meaning for genes or a basis 

for a specific investigation
– location of interesting terms
– division by cellular location, biological process, 

molecular function



Experiment

• S. Chiaretti of the Ritz Lab (DFCI) carried out a 
comprehensive study of gene expression in ALL 
(Acute Lymphoblastic Leukemia)

• we look at the 37 patients with BCR/ABL (9-22 
translocation) and 42 with no known chromosomal 
abnormalities

• HGu95Av2 chips were run (12625 probes), and 
genes filtered for expression and variation (non-
specific filtering)

• we are left with 2031 genes



Experiment

• BCR/ABL is known to mediate some of its effect 
through tyrosine kinase activity

• one approach might be to restrict attention to 
genes that are annotated at the tyrosine kinase
node of the MF ontology (GO:0004713)

• there were 230 different probes annotated there 
and of these only  32 were selected by our non-
specific filtering procedure



t-tests
• two permutation t-tests were applied to compare 

expression betweenn BCR/ABL and NEG (p-
values FDR corrected)

• this is no surprise - if you test more things the 
correction is more severe

0.82230.4730.0180.001All

0.07120.02060.00040.0001Ty K

2057_g_at56643_at2039_s_at40480_s_atIDs



Tests

• you will generally be better off by testing fewer, 
more relevant, hypotheses

• p-value corrections are really a band-aid not a 
solution

• they adjust the cut-off so that those above it are 
enriched for truly false hypotheses but that is at 
the expense of rejecting more truly false 
hypotheses whose p-values fail to attain the level 
of the cut-off



Shortest Paths

• for microarray data we are examining gene 
(mRNA) expression levels

• this is typically an average over thousands of cells
• correlated expression can be related to similarity 

of function
– Ge et al relate expression and protein complex co-

membership (use a time-course experiment)
– Zhou et al use shortest paths in gene expression data for 

annotation (used Rosetta Compendium - consists 
mainly of knock-outs and drug treatment)

– here we are looking at a cohort study



Shortest Path

• the premise for our investigation was that 
transcription factors are largely self-regulatory

• we compare paths between transcription factors 
computed separately for the two subgroups of 
interest (BCR/ABL and NEG)

• let Cuv denote the absolute value of the Pearson 
correlation between genes u and v

• and edge exists in the graph, between nodes u and 
v if Cuv is larger than 0.6

• and in that case the distance between the nodes is 
1- Cuv



Shortest Path

• GO:003700 is the term for the molecular function 
of transcription factor activity

• for the U95av2 chip there are 814 probes mapped 
to this term, 531 unique LL IDs

• for our genes (those that passed the non-specific 
filter) there were 152 probes and 146 unique LL 
IDs (dropped the six as their correlations with the 
retained ones were high)

• so we have a graph on 2391 nodes and from that 
we compute a 146 by 146 distance matrix



Shortest Path

• both graphs have the same number of nodes (but 
not the same connected components)

• the BCR/ABL graph has 78182 edges
• the NEG graph has 87936 edges
• the between transcription factor distances in the 

NEG graph tended to be larger than those in the 
BCR/ABL graph

• preliminary investigations suggest that it is due to 
fewer steps in the path, not higher correlation



Histogram of the absolute value of the
pairwise difference in distances between 
transcription factors (NEG vs BCR/ABL)



Path in BCR/ABL Graph Path in Neg Graph

Path from MYC to MPO



MYC-MPO

• For BCR/ABL samples:
"MYC->KIAA0540->HMG20B->MPO”

• For NEG samples:
"MYC->CDC25B->TRAP1->POLR2H-
>MSH2->EMP3->S100A4->LGALS1->MPO"



Pairwise scatter plot for BCR/ABL path from MYC to MPO



Transitive expression

• notice that the relationship (if real) between 
MYC and MPO seems to be mediated by 
other genes

• Zhou et al refer to this as transitive co-
expression

• note there is nothing temporal in my graphic 
(these are representations of some sort of 
steady state, averaged across many cells)



Finding Interesting GO terms

• GO has often been used to detect sets of 
terms that are overrepresented in a set of 
selected genes

• suppose that you have selected a set of 
interesting genes

• in our case we can choose those genes 
which differentiate BCR/ABL from NEG 
by t-test



Finding Interesting GO terms

• find all genes that are differentially 
expressed (you can decide what that means)

• select an ontology of interest
• find the set of mappings from the interesting 

genes to the most specific applicable terms
• from these terms and the GO structure find 

the induced GO graph



The induced GO graph for the MF ontology



The Test: two-way tables

• the test most often employed is the 
Hypergeometric

• There are a total of N balls (LocusLink IDs)and 
each can either be annotated at the node of interest 
(or not) and each can be interesting or not.

• so we can do two way table testing (Fisher’s exact 
test and the Hypergeometric sampling are the 
same thing)



Equivalent: Hypergeometric

• our urn contains N balls
• our gene list has m balls (we can think of 

these as the white balls in the urn) and 
hence N-m black balls

• a node in the graph has k genes annotated at 
it

• we think of there being k draws from the 
urn and ask if we got too many white balls



The GO graph

• we can now label (and add color) to the 
induced GO graph

• if the Hypergeometric p-value is less than 
0.1 then the node is colored red, otherwise it 
is blue





Exploration

• which terms are associated with the extreme 
nodes?

• are there lots of genes there or only a few (node 
size)

• are there nodes that are underrepresented?
• should we further subdivide:

– we could use either CC or BP categories to further 
categorize the genes here

– and hence investigate not just what the gene is doing 
(MF)  but additionally where, or for what reason



Testing - Issues

• there seems to be a parent-child pattern of 
significance

• not surprising given the construction
• there is also a problem of size

– what should the size of the test be
– number of significant nodes divided by the total 

number of nodes?



Testing - Issues

• if we agree that size should be number of 
significant nodes divided by the number of 
nodes then there is a problem

• in general the estimated proportion does not 
equal the nominal p-value (too many 
rejections)



Testing issues

• part of the problem is due to the method of 
construction

• every node in the induced graph has one or more 
interesting genes annotate at it and if very few 
genes are annotated there then the node is 
significant

• if there are 100 interesting genes then min size is 4 
(any node in the induced graph of size less than 4 
must be significant at the 0.05 level)

• and max size is 6034 (any node of this size or 
more will never reject-even if all genes are there)



Testing Issues

• in a simulation study (select K=100 genes at 
random, find the induced GO graph and carry out 
the significance test)

• below we have probability of rejection as a 
function of node size (log number of genes)

(-0.00872,2.18]     (2.18,4.36]     (4.36,6.54]   (6.54,8.73]
0.378     0.029     0.000              0.000

• nominal p-value was 0.05; overall empirical 
rejection rate was 0.123

• more extensive investigations are warranted



Testing Issues

• in addition it is not clear how to carry out 
any adjustment

• the tests at different nodes are typically not 
independent (every gene annotated at a 
child node is annotated at the parent)

• preliminary investigations indicate that 
there are issues of parent-child significance 
that need to be addressed





GO and Distances

• GO can be used to define, or describe, 
between gene distances

• the more similar the annotation the more 
similar the genes are

• many ideas have been put forward, most are 
not entirely satisfactory



Distances

• distances between terms
• distances between genes

– expression data
– use the terms they are annotated at and the 

distances between terms



Distances Between Terms

• Cheng et al suggest that a similarity measure 
could be based on the number of edges in 
common on the shortest path to the root

• they claim that this relates to biological 
similarity – bigger is better with similarities

• they also state that edges close to the root have 
more biological importance and deserve greater 
weight



Distances

• for GO:0003700 the 
similarity with  
GO:0030528 is 1 and 
the similarity with 
GO:0003677 is 3

• they are both parents 
of GO:0003700



Distances
• GO:0003700 is more 

similar to 
GO:0003680 (3) than 
to its own child, 
GO:0003701 (2)



Distances
• B. Ding and I have been looking at a 

different measure of similarity between 
terms

• for any two terms, T1 and T2,  find the 
induced GO graphs

• define SD(T1, T2) to be the set of nodes that 
they have in common divided by the 
number of nodes in total 



Distances

• i.e. the cardinality of their intersection divided by 
the cardinality of their union

• larger values correspond to more similarity
• SD can be criticized on the grounds that it does not 

account for the complexity of the graphs being 
considered

• the terms GO:0005488 and GO:0030528 have the 
same similarity as GO:0003700 and GO:0030528 
(1/3 and 2/6)



Distances

• a comparison with SY
– SY(3700, 30528) = 2/6
– SY(3700, 30677) = 4/6

• but
– SD(3700, 3701) = 6/7
– SD(3700, 3680) = 4/7

• for SD GO:0003700 is 
more similar to its child 
than to GO:0003680



Another Distance
• use the suggestion of Cheng to create a between gene 

similarity measure
• for any two genes, gi, gj,

– find the set of common annotations (the intersection of 
their induced GO graphs)

– find the depth of each term; distance to the root node
– the similarity is the maximum depth



Distances

• we can define distances between genes 
using the distances between the GO terms 
that they are annotated at

• many genes are annotated at multiple terms 
within the same ontology

• we could define the distance to be the 
minimum (or the maximum) of all pairwise 
distances



Distances

• we might also want to consider why a gene 
is annotated at multiple terms

• in some cases this shows that the gene is 
related to many biological processes, 
performs several molecular functions, is a 
part of many cellular components

• in other cases (according to GO 
documentation) it demonstrates uncertainty



Distances: Information Content

• Lord et al consider similarities or distances 
on the basis of the information content at a 
node

• this measure of distance requires some set 
of annotated genes to provide data on 
information content



Information Content

• take all LocusLink genes for humans
• find all annotations from human genes to 

GO terms in the LocusLink corpus
• a term is considered to have high 

information content if it appears relatively 
infrequently in the data

• two terms are considered similar if they 
share annotation at a term that appears 
infrequently



Information Content

• for each GO term we compile the number of 
times that that term, or any child, is found in 
the data source

• one might only want to use the is-a children 
or the has-a children

• we then form proportions by dividing each 
count by the total number of references

• thus, the root node has proportion 1



Adapted from Lord et al



Some Uses 

• suppose that we have a microarray 
experiment and we want to choose an 
appropriate metric for the gene expression 
data

• one way of choosing a metric is to select the 
one that provides the best agreement with 
distances based on MF (or BP or CC)



Some Issues

• for microarray data we generally obtain 
expression data on a per probe basis

• there is a many to one mapping from probe 
data to LocusLink ids and it is the 
LocusLink ids that map to GO terms

• some accounting of this multiplicity should 
be taken



Issues

• it will be important in some contexts to 
account for and adjust for the evidence on 
which an annotation was based

• for example if exploring sequence similarity 
as it relates to function all ISS based 
annotations should be excluded



Issues

• at each node we can consider splitting the 
annotated genes into categories
– inherited from child i (i = 1, …nc) and those 

annotated at the node 
– this might not be a partition
– do we want to consider an analysis on these 

data?
– esp. those annotated at this node



Conclusions

• GO provides a rich resource for both exploratory 
data analysis and hypothesis testing

• but we lack the tools to adequately exploit this 
rich data resource

• software tools, such as those provided by the 
BioConductor Project (and others FatiGO, 
AmiGO etc) greatly facilitate the use and 
understanding of these data
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