
Testing for differential expression

Wolfgang Huber

June 4, 2004

In this short exercise, we will explore two methods for selecting differentially expressed
genes in a probe-by-probe manner. One method is based on hypothesis testing. We will use
the t-test as a representant for this class of methods, which also comprises, for example, the
Wilcoxon test and F -tests. Another method is based on the strength of discrimination, and
is based on looking at properties of the Receiver Operating Characteristic Curves for each
gene, if that gene were used as a discriminator.

First, let’s load the necessary libraries and data.

> library(Biobase)

> library(ALL)

> data(ALL)

> library(multtest)

> library(genefilter)

We select the subset of B-cell ALLs whose molecular type is either BCR/ABL or NEG.

> sela <- intersect(grep("^B", as.character(ALL$BT)), which(as.character(ALL$mol.biol) %in%

+ c("BCR/ABL", "NEG")))

> ALLs <- ALL[, sela]

> table(ALLs$mol.biol)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16
0 37 0 42 0 0

Now select a subset of probes whose intensities were above 300 in at least 25% of the
samples.

> f1 <- pOverA(0.25, log(300, 2))

> ff <- filterfun(f1)

> selp <- genefilter(ALLs, ff)

> ALLs <- ALLs[selp,]

> sum(selp)

[1] 1362

Define a function that produces a logical vector out of an exprSet. The length of the
vector is the number of samples, and the vector is intended to describe a grouping of the
samples e.g. for running a t-test.

1

> classlabel <- function(x) {

+ stopifnot(class(x) == "exprSet", "mol.biol" %in% colnames(pData(x)))

+ return(as.numeric(pData(x)$mol.biol == "BCR/ABL"))

+ }

Now perform a probe-by-probe t-test and look at the histogram of resulting p-values:

> table(classlabel(ALLs))

0 1
42 37

> t <- mt.teststat(exprs(ALLs), classlabel = classlabel(ALLs),

+ test = "t.equalvar")

> pval <- 2 * (1 - pt(abs(t), df = ncol(exprs(ALLs) - 2)))

> hist(pval, breaks = 100, col = "orange")

Histogram of pval

pval

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

Another way to select genes is by the partial area under the curve (pAUC), where the
curve is a receiver operating curve (ROC).

> library(ROC)

> my.pAUC <- function(x, p = 0.1, ...) {

2

+ roc <- rocdemo.sca(data = x, rule = dxrule.sca, ...)

+ return(pAUC(roc, p))

+ }

> area <- esApply(ALLs, 1, my.pAUC, truth = classlabel(ALLs))

> hist(area, breaks = 100, col = "blue")

Histogram of area

area

F
re

qu
en

cy

0.00 0.02 0.04 0.06

0
50

10
0

15
0

20
0

The following plot shows that large pAUC values correspond to large values of the t-
statistic, but not necessarily the other way round:

> plot(area, t, xlab = "pAUC", ylab = "t-statistic", pch = 16,

+ cex = 0.5, col = "orange")

3

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●●●

●
●

●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●●

●
●

●
●
●

●

●
●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●●

●

●

●

●
●

●●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●
●●

●
●

●

●

●

●

●
●

●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●● ●

●
● ●

●

●

●
●

●

0.00 0.02 0.04 0.06

−
4

0
2

4
6

8

pAUC

t−
st

at
is

tic

Why are there no large values of area for very small values of t? What happens if you
use

> area2 <- esApply(ALLs, 1, my.pAUC, truth = 1 - classlabel(ALLs))

As a strategy to select genes from a microarray experiment (e.g. for follow-up studies),
one might think of at least two strategies:

1. choose all probes with a p-value less than some threshold (i.e. t-statistic larger than
some threshold)

2. choose all probes with a pAUC larger than some threshold

Let’s investigate how the number of probes we would select either way depends on the num-
ber of samples that we have. To this end, first define a wrapper function around mt.teststat.

> nrsel.ttest <- function(x, pthresh = 0.05) {

+ t <- mt.teststat(exprs(x), classlabel = classlabel(x), test = "t.equalvar")

+ pval <- 2 * (1 - pt(abs(t), df = ncol(exprs(ALLs) - 2)))

+ return(sum(pval < pthresh))

+ }

4

A similar wrapper around my.pAUC:

> nrsel.roc <- function(x, areathresh = 0.03) {

+ area <- esApply(x, 1, my.pAUC, truth = classlabel(x))

+ return(sum(area > areathresh))

+ }

However, resampling with that would become unbearably slow (someone needs to write a
faster implementation of the functions pAUX and rocdemo.sca). So, for the purpose of this
exercise, let’s use a similar but slightly simpler criterion. The following function counts all
those probes for which the fraction of samples in class 1 that has a value above the median
of all samples is larger than larger than 0.75 or smaller than 0.25:

> nrsel.simple <- function(x, fracthresh = 0.25) {

+ rmed <- esApply(x, 1, median)

+ comp <- exprs(x) > rmed

+ nrs <- comp * matrix(classlabel(x), nrow = nrow(comp), ncol = ncol(comp),

+ byrow = TRUE)

+ nrs <- rowSums(nrs)

+ sizcl <- sum(classlabel(x))

+ return(sum(nrs >= (1 - fracthresh) * sizcl | nrs <= fracthresh *

+ sizcl))

+ }

Now let’s write a function that does some resampling for various data set sizes:

> resample <- function(selfun, groupsize = seq(6, 36, by = 6),

+ nrep = 25) {

+ n <- matrix(nrow = nrep, ncol = length(groupsize))

+ for (i in seq(along = groupsize)) {

+ for (rep in 1:nrep) {

+ samplesubset <- c(sample(which(classlabel(ALLs) ==

+ 0), groupsize[i]), sample(which(classlabel(ALLs) ==

+ 1), groupsize[i]))

+ n[rep, i] <- do.call(selfun, args = list(x = ALLs[,

+ samplesubset]))

+ }

+ }

+ mns <- apply(n, 2, mean)

+ stds <- apply(n, 2, sd)

+ plot(groupsize, mns, pch = 16, col = "#c03030", ylim = c(min(mns -

+ stds) - 5, max(mns + stds) + 5), xlab = "groupsize",

+ ylab = "selected no. of diff. exp. genes", main = selfun)

+ segments(groupsize, mns - stds, groupsize, mns + stds, col = "red")

+ }

And run it

5

> par(mfrow = c(1, 2))

> resample("nrsel.simple")

> resample("nrsel.ttest")

●

●

● ●
● ●

5 10 15 20 25 30 35

0
50

10
0

15
0

nrsel.simple

groupsize

se
le

ct
ed

 n
o.

 o
f d

iff
. e

xp
. g

en
es

●

●
●

●

●

●

5 10 15 20 25 30 35

50
10

0
15

0
20

0
25

0

nrsel.ttest

groupsize

se
le

ct
ed

 n
o.

 o
f d

iff
. e

xp
. g

en
es

Which of the two criteria seems more reasonable?

6

