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1 Introduction

The predominant use for microarrays is the measurement of genome-wide expression
levels, and the most commonly used microarray platform is the Affymetrix GeneChip.
Affymetrix GeneChip arrays use short oligonucleotides to probe for genes in an RNA
sample. Genes are represented by a set of oligonucleotide probes each with a length
of 25 bases. Because of their short length, multiple probes are used to improve speci-
ficity. Affymetrix arrays typically use between 11 and 20 probe pairs, referred to as
a probeset, for each gene. One component of these pairs is referred to as a perfect
match probe (PM) and is designed to hybridize only with transcripts from the intended
gene (specific hybridization). However, hybridization to the PM probes by other mRNA
species (non-specific hybridization) is unavoidable. Therefore, the observed intensities
need to be adjusted to be accurately quantified. The other component of a probe pair,
the mismatch probe (MM), is constructed with the intention of measuring only the non-
specific component of the corresponding PM probe. Affymetrix’s strategy is to make
MM probes identical to their PM counterpart except that the 13-th base is exchanged
with its complement.

The identification of genes that are differentially expressed in two populations is a
popular application of Affymetrix GeneChip technology. Due to the cost of this tech-
nology, experiments using a small number of arrays are common. A situation we often
see is the case where three arrays are used for each population. In this lab, we give
an example of how to quickly create lists of genes that are interesting in the sense that
they appear to be differentially expressed, starting from the raw probe level data (CEL
files). In Section [2] we briefly describe the functions necessary to import the data into
Bioconductor. In Section [3] we talk about preprocessing. In Section [4] we describe ways
to rank genes and decide on a cutoff. Finally, in Section [5| we describe how to make
annotated reports and examine the PubMed literature related to the genes in our list.



2 Reading CEL files

The affy package is needed to import the data into Bioconductor.
> library("affy")

In the Affymetrix system, the raw image data are stored in so-called DAT files. Currently,
Bioconductor software does not handle the image data, and the starting point for most
analyses are the CEL files. These are the result of processing the DAT files using
Affymetrix software to produce estimated probe intensity values. Each CEL file contains
data on the intensity at each probe on the GeneChip, as well as some other quantities.

To import CEL file data into the Bioconductor system, we use the ReadAffy function.
A typical invocation is:

> library("affy")
> Data <- ReadAffy()

which will attempt to read all the CEL files in the current working directory and place
the probe-level data in an AffyBatch. If only a portion of the CEL files are to be read,
one can use the filenames argument to select those files by name, or set the widget to
TRUE to use a graphical user interface to select files. In this lab, we will not read in the
data. Instead we use an already created AffyBatch object, named spikein95, available
through the package SpikeInSubset.

> library("SpikeInSubset")
> data(spikein95)

An AffyBatch contains several slots that hold various data:

> slotNames (spikein95)

[1] "cdfName" "nrow" "ncol" "exprs"
[5] "se.exprs" "phenoData" "description" "annotation"
[9] "notes"

The cdfName slot contains the name of the Chip Description File, which maps the probes
to their physical location on the chip, the nrow and ncol slots which give the dimensions
of the chip, the exprs slot which contains the probe level data (the se.exprs is not used
at this time), the phenoData slot which contains phenotypic data that describe each
sample, the annotation slot which contains the name of the annotation package for the
chip, the description slot which contains the 'MIAME’ information for the experiment
(see TMIAME for more information), and the notes slot, which contains any notes about
the experiment.

The spikein95 Affybatch contains data from a six array subset (2 sets of tripli-
cates) from a calibration experiment performed by Affymetrix. For the purpose of this
experiment, we replace the current phenoData, describing the calibration experiment,
with information needed for our example dealing with two populations.



> pd <- data.frame(population = c(1, 1, 1, 2, 2, 2), replicate = c(1,
+ 2, 3, 1, 2, 3))

> rownames (pd) <- sampleNames (spikein95)

> vl <- list(population = "1 is control, 2 is treatment”,

+ replicate = "arbitrary numbering")

> phenoData(spikein95) <- new('"phenoData'", pData = pd,

+ varLabels = vl)

The assignment to phenoData above, can also be done using the function read.phenoData.

There are various accessor functions available for extracting data from an AffyBatch.
Two notable examples are the pm and mm functions which are used to extract the PM
and MM probe intensities. One may also pass a vector of Affymetrix probe IDs as the
second argument to these functions to return intensities for only certain probesets. More
information about the AffyBatch class can be found in the help page (accessed by typing
class 7Affybatch at an R prompt).

2.1 Quality Control

Obtaining gene expression measures for biological samples from Affymetrix GeneChip
microarrays is an elaborate process with many potential sources of variation. In addition,
the process is both costly and time consuming. Therefore, it is critical to make the best
use of the information produced by the arrays, and to ascertain the quality of this
information. Unfortunately, data quality assessment is complicated by the sheer volume
of data involved and by the many processing steps required to produce the expression
measures for each array. Furthermore, quality is a term which has some dependency on
context to which it is applied. From the viewpoint of a user of GeneChip expression
values, lower variability data, with all other things being equal, should be judged to be
of higher quality.

There are several Bioconductor packages designed for the analysis of Affymetrix
GeneChip data, each of which has a set of functions that can be used to assess overall
quality of the raw data. The affy package supplies several functions for exploratory
data analysis (EDA), which is often the most powerful way to detect either outlier or
high-variability chips.

library ("ALLMLL")

data(MLL.B)

Data <- MLL.B[, c(2, 1, 3:5, 14, 6, 13)]
sampleNames (Data) <- letters[1:8]
rm(MLL.B)

gc()
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Exercise 1
The ALLMLL contains a subset of data from a large acute lymphoblastic leukemia (ALL)



study (Ross et al.,|2004). The above code loaded the package and subsetted the resulting
AffyBatch to contain just eight samples.

e Using the image function, plot a false color image of the first chip. Notice the
obvious spatial artifact.

e Using the hist function, plot smoothed densities for each chip. Note the bimodal
distribution of the first chip - this is due to the spatial artifact noted above.

e Look at a boxplot of the chips - the high background of the ’f’ chip is obvious in
this plot.

3 Preprocessing

After checking overall chip quality, the next step is to preprocess the data to obtain
expression measures for each gene on each array. Preprocessing Affymetrix expression
arrays usually involves three steps: background adjustment, normalization, and summa-
rization.

There are several methods available from Bioconductor for preprocessing Affymetrix
GeneChip data. These methods include the masd function, which very closely duplicates
the MAS5 method developed by Affymetrix (Affymetrix)), the fit.li.wong function, which
emulates the MBEI method (Li and Wongj, 2001)), the rma function (Irizarry et al.,|2003),
and germa (Wu et al.l 2005). In addition, the ezpresso function can be used to combine
various background adjustment, normalization, and summarization methods.

Here we simply use rma to compute expression measures.

> eset <- rma(spikein95)

The rma function will background correct, normalize, and summarize the probe level
data, as described by [Irizarry et al. (2003)), into expression level data. The expression
values are in log base 2 scale. The information is saved in an instance of the exprSet
class, which contains similar information to the AffyBatch class. Specifically, the ex-
prSet contains expression level as opposed to probe level data.

A matrix with the expression information is readily available. The following code
extracts the expression data and demonstrates the dimensions of the matrix storing the
data:

> e <- exprs(eset)
> dim(e)

[1] 12626 6



We can see that in this matrix, rows represent genes and columns represent arrays. To
know which columns go with what population, we can rely on the phenoData information
inherited from spikein95.

> pData(eset)

population replicate
1521a99%hpp_av06 1
1532a99%hpp_av04
2353a9%hpp_av08
1521b99%hpp_av06
1532b99%hpp_av04
2353b9%hpp_av08r

N NN - -
WN - WN -

We can conveniently use $ to access each column and create indexes denoting which
columns represent each population:

> Index1 <- which(eset$population == 1)
> Index2 <- which(eset$population == 2)

We will use this information in the next section.

As mentioned above, we are only demonstrating the use of RMA. Other options are
available through the functions mas5 and expresso. If you find ezpresso too slow, the
package affyPLM provides an alternative, threestep, that is faster owing to use of C
code.

Exercise 2
e Compute expression values for these data using the mas5 function. Compare the
first replicate from the two populations using an ‘M vs A’ plot (see ?mva.plot)
Hint: you will need to subset out the two chips you want to compare. How does
this compare to an M vs A plot for the same two samples using the rma expression
measure?

e The rma function fits a robust model to the data. As with all models, it is useful
to look at the residuals to see how well the model fits the data. Using the affy PLM
package, compute rma expression measures and then plot residuals for each chip.
Hint: see “rmaPLM and the “Fitting Probe Level Models” vignette in the afftyPLM
package.

4 Ranking and filtering genes

Now we have, in e, a measurement x;;;, of log (base 2) expression from each gene j on
each array i for both populations £ = 1,2. For ranking purposes, it is convenient to



quantify the average level of differential expression for each gene. A naive first choice is
to simply consider the average log fold-change:

dj - .ZZ’J'Q - jjl
with
i’jQ = (CEUQ + iIZ’QjQ + l’gjg)/?) and jjl = (xljl + 372]'1 + Ll'gjl)/?), for j = 1, ceey J.

To obtain d, we can use the rowMeans function, which provides a much faster alternative
to the commonly used function apply:

> d <- rowMeans (e[, Index2]) - rowMeans(e[, Index1])

Various authors have noticed that the variability of fold-change measurements usually
depends on over-all expression of the gene in question. This means that the evidence
that large observed values of d provide, should be judged by conditioning on some value
representing over-all expression. An example is average log expression:

> a <- rowMeans(e)

The MA-plot shows d plotted against a. We restrict the y-axis to log fold changes
of less than 1 in absolute value (fold change smaller than 2). We do this because in this
analysis only one gene reached a fold change larger than 2. To see this we can use the
following line of code:

> sum(abs(d) > 1)

(1] 1

4.1 Summary statistics and tests for ranking

In Figure[I]A we can see how variance decreases with the value of a. Also, different genes
may have different levels of variation. Should we then consider a ranking procedure that
takes variance into account? A popular choice is the ¢-statistic. The ¢-statistic is a ratio
comparing the effect size estimate d to a sample based within group estimate of the
standard error:

3
1
j:§;xw2 Tjo)?)3+ = Z;xm Tj1)%/3, for j=1,...,J

To calculate the ¢-statistic, d;/s;, we can use the function rowttests from the package
genefilter, as demonstrated in the following code:

> library("genefilter")
> tt <- rowttests(e, factor(eset$population))
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The first argument is the data matrix, the second indicates the two groups being com-
pared.

Do our rankings change much if we use the t-statistic instead of average log fold
change? The volcano plot is a useful way to see both these quantities simultaneously.
This figure plots p-values (more specifically — log,, the p-value) versus effect size. For
simplicity we assume the t-statistic follows a t-distribution. To create a volcano plot,
seen in Figure [IB, we can use the following simple code:

This Figure demonstrates that the t-test and the average log fold change give us
different answers.



A) MA-plot B) Volcano plot for $t$—test
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Figure 1: A) MA-plot. B) Volcano plot for the t-test. C) As B) but with restricted
x-axis, blue diamonds denoting the top 25 genes ranked by average fold change and red
circles to denoting the top 25 genes ranked by smallest p-value. D) As C) but for the
moderated t-test.

Figure is like Figure but we restrict the z-axis to [—1, 1] to get a better view
of most of the data. We also add blue diamonds to denote the top 25 genes ranked
by average fold change and red circles to denote the top 25 genes ranked by smallest
p-value. The following lines of code permit us to create this figure:

There is a relatively large disparity. Possible explanations are 1) Some genes have



larger variance than others. Large variance genes that are not differentially expressed
have a higher chance of having large log fold changes. Because the t-statistics take
variance into account, these do not have small p-values. 2) With only three measurements
per group the estimate of the standard error of the effect size is not stable and some
genes have small p-values only because, by chance, the denominator of the t-statistic
was very small. Figure demonstrates both of these explanations are possible.

Do we use average fold change or the t-statistic to rank? They both appear to have
strengths and weaknesses. As mentioned, a problem with the t-statistic is that there
is not enough data to estimate variances. Many researchers have proposed alternative
statistics that borrow strength across all genes to obtain a more stable estimate of
gene-specific variance. The resulting statistics are referred to as modified t-statistics.
Because they reduce the possibility of large values they are also referred to as penalized,
attenuated, or reqularized t-statistics. The are many versions of modified t-statistics, for
example the statistic used by SAM (Tusher et al., 2001), and it is impossible to describe
them all in this lab.

An example of such a modified t-statistic is given by Smyth (2004) and is available
in the ltmma package. It is denoted the moderated t-statistic. This statistic is based on
an empirical Bayes approach, described in detail by the above mentioned references, can
be implemented with the following code:

> library("limma")

> design <- model.matrix(“factor (eset$population))
> fit <- lmFit(eset, design)

> ebayes <- eBayes(fit)

For more details on the above code please see the limma user’s manual. One detail we
will point out is that, as part of its output, the ImFit function produces the values we
have stored in d and tstat previously computed.

Figure demonstrates the empirical Bayes approach improves on the t-statistic in
terms of not giving high rank to genes only because they have small sample variances.
To see this notice that we now have fewer genes with small p-values (large in the y-axis)
that have very small log fold changes (values close to 0 in the z-axis).

4.2 Selecting cutoffs

We have presented three statistics that can be used to rank genes. Now we turn our
attention to deciding on a cutoff. A naive approach is to consider genes attaining p-
values less than 0.01. However, because we are testing multiple hypotheses, the p-values
no longer have the typical meaning. Notice that if all the 12626 (number of genes
on array) null hypotheses are true (no genes are differentially expressed) we expect
0.01 x 12626 = 126.26 false positives. In our data set we have

> sum(tt$p.value <= 0.01)



[1] 46

Various approaches have been suggested for dealing with the multiple hypothesis
problem. The suggested procedures usually provide adjusted p-values that can be used
to decide on appropriate cutoffs. However, different procedures result in different inter-
pretations of the resulting lists. In Section [5] we demonstrate simple code that can be
used, along with the results of the eBayes function described above, to construct lists of
genes based on adjusted p-values.

An alternative ad hoc procedure is to use the MA and volcano plots to look for groups
of genes that appear to be departing from the majority. For example, in Figure we
can restrict our attention to the small cluster of genes in the upper right corner having
small p-value and large fold changes.

4.3 Comparison

We deviate slightly from our analysis to demonstrate that the moderated t-statistic
appears to perform better than average log fold change and the t-test.

Because we are using a spike-in experiment we can assess the three competing statis-
tics. First we obtain the names of the genes that were spiked-in. This is available in the
original phenoData.

> data(spikein95)
> spikedin <- colnames (pData(spikein95))
> spikedIndex <- match(spikedin, geneNames (eset))

Because in this experiment replicate RNA, except for the spiked-in material, was
hybridized to all arrays, only the 16 spiked-in genes should be differentially expressed.
This means that a perfect ranking procedure would assign ranks from 1 to 16 to the 16
spiked-in genes. The following code shows that the moderated t-statistic is performing
better than its three competitors.

> d.rank <- sort(rank(-abs(d)) [spikedIndex])
> t.rank <- sort(rank(-abs(tt$statistic)) [spikedIndex])
> mt.rank <- sort(rank(-abs(mtstat)) [spikedIndex])
> ranks <- cbind(mt.rank, d.rank, t.rank)
> rownames (ranks) <- NULL
> ranks
mt.rank d.rank t.rank

[1,] 1 1 1

[2,] 2 2 3

[3,] 3 3 5

[(4,] 6 4 8
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[5,] 7 5 13
[6,] 8 6 17
[7,] 9 9 19
[8,] 10 11 27
[9,] 11 12 28
[10,] 12 14 29
[11,] 16 16 45
[12,] 25 53 70
[13,] 28 86 71
[14,] 48 226 93
[15,] 77 331 390
[16,] 465 689 900

The results above permit us to see how many true positives we would have in a list of
any size ranked by each of the three statistics. To do this, we simply count the number of
spiked-in genes with ranks smaller or equal to the size of the list. As an example notice
that in a list of the top 25 genes, we would obtain 12, 11, and 7 true positives for the
moderated t-statistic. This demonstrates that the choice of ranking statistic can have
an effect on your final results. Also notice that this is just one analysis, and one would
expect different results with a new data set. We encourage users to run this analysis on
other data sets and assess the performance of different alternative procedures.

5 Annotation

Let us now consider a list of interesting genes and create a report. As an example we
will consider the top 10 genes as ranked by the moderated t-statistic. To do this we can
use the topTable function from the limma package in the following way:

> tab <- topTable(ebayes, coef = 2, adjust = "fdr", n = 10)

This function creates a table showing various interesting statistics. This line of code
shows us the first 5 entries:

> tab[1:5, ]

ID M A t P.Value B
780  1708_at -7.0610613 7.945276 -73.529269 9.868948e-13 8.646866
6253 36202_at 0.8525527 9.373033 9.975114 3.115897e-03 4.587736
6363 36311_at 0.8318298 8.564315  8.363252 1.269758e-02 3.567790
3285 33264_at 0.7118997 4.918953  7.434888 2.706595e-02 2.835849
2675 32660_at 0.6554022 8.680132 7.356180 2.706595e-02 2.768151
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By specifying coef as 2 we define d as our parameter of interest. The argument n defines
how many top genes to include in the table. Finally, through adjust we are instructing
topTable to calculate the false discovery rate adjustment for the p-values obtained from
eBayes using the procedure described by Benjamini and Hochberg| (1995). See the limma
user’s manual for more details.

In the remainder of this lab, we will use the Affymetrix identifiers to obtain biological
meta-data information about these 10 genes. We can obtain these using the ID column
of tab:

> genenames <- as.character (tab$ID)

5.1 Annotation package overview

First, we will digress slightly to explain the various metaData packages that are available
from Bioconductor. The metaData packages can be divided into three groups:

e General annotation (GO, KEGG)
e Species level annotation (xxxhomology, YEAST)

e Chip level annotation (hgul33plus2, rat4302, etc.)

Each of these metaData packages contain one or more environments which are similar
to hash tables. A hash table provides a very quick way of looking up values using a key.
We can use the functions get, and mget to extract data from a given environment. As
an example, we will use the hgu95av2 package. Note that this package contains several
environments, most of which use the Affymetrix probe IDs as keys.

> library("hgu95av2")
> hgu95av2()

Quality control information for hgu95av2
Date built: Created: Tue May 17 16:16:13 2005

Number of probes: 12625

Probe number missmatch: None

Probe missmatch: None

Mappings found for probe based rda files:
hgu95av2ACCNUM found 12625 of 12625
hgu95av2CHRLOC found 11718 of 12625
hgu95av2CHR found 12261 of 12625
hgu95av2ENZYME found 1804 of 12625
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hgu95av2GENENAME found 11342 of 12625
hgu9b5av2G0 found 11281 of 12625
hgu95av2L0OCUSID found 12339 of 12625
hgu9b5av2MAP found 12216 of 12625
hgu95av20MIM found 9949 of 12625
hgu95av2PATH found 3627 of 12625
hgu95av2PMID found 12193 of 12625
hgu95av2REFSEQ found 12147 of 12625
hgu95av2SUMFUNC found O of 12625
hgu95av2SYMBOL found 12281 of 12625
hgu95av2UNIGENE found 12177 of 12625
Mappings found for non-probe based rda files:
hgu95av2CHRLENGTHS found 25
hgu95av2ENZYME2PROBE found 604
hgu95av2GO2ALLPROBES found 5442
hgu95av2GO2PROBE found 3908
hgu95av20RGANISM found 1
hgu95av2PATH2PROBE found 142
hgu95av2PMID2PROBE found 89656

> gn <- mget(genenames, hgu95av2GENENAME)
> sapply(gn, function(x) if (!is.na(x)) strwrap(x) else x)

$"1708_at"
[1] "mitogen-activated protein kinase 10"

$"36202_at"
[1] "protein kinase (cAMP-dependent, catalytic) inhibitor alpha"

$"36311_at"
[1] "phosphodiesterase 1A, calmodulin-dependent"

$"33264_at"
[1] "enolase superfamily member 1"

$"32660_at"
[1] NA

$"38734_at"
[1] "phospholamban"

13



$"1024_at"
[1] "cytochrome P450, family 1, subfamily A, polypeptide 1"

$"36085_at"
[1] "guanine nucleotide binding protein (G protein), alpha"
[2] "transducing activity polypeptide 1"

$"33818_at"
[1] "Fanconi anemia, complementation group G"

$"39058_at"
[1] "active BCR-related gene"

One problem that may occur when using an environment for the first time is deter-
mining what the keys are for that particular environment. The keys can be extracted
using the /s function:

> 1s(hgu95av2GENENAME) [1:10]

[1] "100_g_at" "1000_at" "1001_at" "1002_f_at" "1003_s_at"
[6] "1004_at" "1005_at" "1006_at" "1007_s_at" "1008_f_at"

The metaData packages are generally used in a step-wise manner, starting at the
most specific (chip-level), and proceeding to the most general. For instance, we could
take a set of Affymetrix probe IDs and map them to their respective Gene Ontology
(GO) terms using the hgu95av2G0 environment. This will give us a list containing all
the GO IDs associated with each of the Affymetrix probe IDs. We could then use these
GO IDs (which are keys for the GO package) to map the Affymetrix probe IDs to the
GO terms that are associated with each of the Affymetrix probe IDs.

> library("GO")
> library("annotate")
> gos <- mget(genenames, hgu95av2G0)

> gos[[1]][1:2]
$"G0D:0004674"
$"G0:0004674"$GOID
[1] "GO:0004674"

$"G0:0004674"$Evidence
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[1] "TEA"

$"G0:0004674"$0ntology
[1] "MF"

$"G0:0004705"
$"G0:0004705"$GOID
[1] "GO:0004705"

$"G0:0004705"$Evidence
[1] n ISS"

$"G0:0004705"$0ntology
[1] IIMFII

> goids <- sapply(gos, names)

> goids[[1]1]

[1] "GO:0004674" "GO:0004705" "GO:0004707"

"G0:0004708" "GO:0005524"

[6] "GO:0006468" "GO:0007165" "GO:0007254" "GO:0016740"

> goterms <- sapply(goids, function(x) mget(as.character(x),

+ GOTERM) )

> sapply(goterms[[1]], Term)

G0:0004674

"protein serine/threonine kinase activity"
G0:0004705

"JUN kinase activity"

G0:0004707

"MAP kinase activity"

G0:0004708

"MAP kinase kinase activity"
G0:0005524

"ATP binding"

G0:0006468

"protein amino acid phosphorylation"
G0:0007165



"signal transduction"
G0:0007254

"JNK cascade"
G0:0016740
"transferase activity"

Exercise 3
We have shown how to extract GO terms, starting with a set of Affymetrix identifiers.
The hgu95av2PATH environment maps Affymetrix IDs to the Kyoto Encyclopedia of
Genes and Geneomes (KEGG), which maintains pathway information for various organ-
isms. As can be seen above, only about 25% of the Affymetrix IDs actually map to a
pathway — the remaining key values simply return an NA.

Extract the first five KEGG pathway IDs from hgu95av2PATH and using the KEGG
package, map them to the respective pathway name. See the help page for hgu95av2PATH
for a hint.

This section showed how to extract data from environments ’by hand’. Although
this sort of thing can be tedious, it is sometimes necessary, so it is worth knowing
how it is done. However, the annotate and annaffy packages supply powerful tools for
automated extraction of annotation information that can be used in most situations. In
the following sections, we present some simple examples.

5.2 PubMed abstracts

The annotate package contains many functions that can be used to query the PubMed
database and format the results. Here we show how some of these can be used to obtain
abstracts with references to a list of genes and report findings in the form of a Web page.
Specifically, to get the abstract information we can use the pm.getabst in the annotate
package (which requires the XML package):

> library("XML")
> absts <- pm.getabst(genenames, "hgu95av2")

The return value absts is a list of the same length as the genenames argument. Each of
the list’s components corresponds to a gene and is itself a list. Each component of this
list is an abstract for that gene. To see the fourth abstract for the first gene, we type
the following;:

> absts[[111[[4]]

An object of class ’pubMedAbst’:

Title: JNK1, JNK2 and JNK3 are p53 N-terminal serine 34
kinases.

PMID: 9393873
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Authors: MC Hu, WR Qiu, YP Wang
Journal: Oncogene
Date: Nov 1997

Please be careful using the function pm.getabst because it queries PubMed directly.
Too many queries of PubMed can get you banned.
To only see the titles for, say, the second probeset, we can type the following.

> titl <- sapply(absts[[2]], articleTitle)
> strwrap(titl, simplify = FALSE)

[[11]
[1] "Isolation and characterization of cDNA clones for an"
[2] "inhibitor protein of cAMP-dependent protein kinase."

[[2]]
[1] "Inhibition of protein kinase-A by overexpression of the"
[2] "cloned human protein kinase inhibitor."

[[3]]

[1] "Structure of a peptide inhibitor bound to the catalytic"

[2] "subunit of cyclic adenosine monophosphate-dependent protein"
[3] "kinase."

[[4]]
[1] "Identification of an inhibitory region of the heat-stable"
[2] "protein inhibitor of the cAMP-dependent protein kinase."

[[51]

[1] "Primary-structure requirements for inhibition by the"
[2] "heat-stable inhibitor of the cAMP-dependent protein kinase."

[[6]1]
[1] "The expression and intracellular distribution of the"
[2] "heat-stable protein kinase inhibitor is cell cycle regulated."

[[71]

[1] "Glutamic acid 203 of the cAMP-dependent protein kinase"
[2] "catalytic subunit participates in the inhibition by two"
[3] "isoforms of the protein kinase inhibitor."

[[8]]

[1] "Evidence for the importance of hydrophobic residues in the"
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[2] "interactions between the cAMP-dependent protein kinase"
[3] "catalytic subunit and the protein kinase inhibitors."

[[9]]
[1] "Generation and initial analysis of more than 15,000"
[2] "full-length human and mouse cDNA sequences."

Here we used the strwrap function to format the text to fit the page width.

Having these abstracts as R objects is useful because, for example, we can search for
words in the abstract automatically. The code below searches for the word “protein” in
all the abstracts and returns a logical value:

> pro.res <- sapply(absts, function(x) pm.abstGrep("[Pplrotein",
+ x))
> pro.res[[2]]

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

A convenient way to view the abstracts is to create a Web page:
> pmAbst2HTML (absts[[2]], filename = "pm.html")

The above code creates an HTML file with abstracts for the second probeset in gene-
names.

5.3 Generating reports

The object top gives us valuable information about the top 10 genes. However, it is
convenient to create a more informative table. We can easily add annotation to this
table and create an HTML document with hyperlinks to sites with more information
about the genes. The following code obtains the Entrez Gene ID, UniGene ID, and
symbol for each of our selected genes.

> 11 <- getLL(genenames, "hgu95av2")
> ug <- unlist(lookUp(genenames, "hgu95av2", "UNIGENE"))
> sym <- getSYMBOL (genenames, "hgu95av2")

With these values available, we can use the following code to create an HTML page
useful for sharing results with collaborators.

> tab <- data.frame(sym, tab[, -1])
> htmlpage(1ist(11, ug), filename = "report.html", title = "HTML report",

+ othernames = tab, table.head = c("Locus ID", "UniGene ID",
+ colnames(tab)), table.center = TRUE, repository = list("11",
+ "'ng"))
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This HTML report contains links to both Entrez Gene and UniGene. However,
htmlpage can only make links to a limited number of online databases, and is primarily
intended for microarrays that do not have chip-level annotation packages. For those
microarrays that do have annotation packages, we can use the annaffy package. Below
are a few lines of code that create a useful HT'ML report with links to various annotation
sites.

> library("annaffy")
> atab <- aafTableAnn(genenames, "hgu95av2", aaf.handler())
> saveHTML (atab, file = "report2.html")

Exercise 4
The annaffy package can be used to create HTML (and text) tables that contain not
only links to various online databases, but that contain additional information as well.
It useful to append the expression values and statistics for the genes that are being
annotated, which gives you and your collaborators the ability to perform ’sanity checks’
to ensure that no coding errors have been made in selecting a set of genes.

Reproduce the above HTML table, but include the t-statistic, p-value, and expression
values for each gene. Also limit the number of links to only include the Affymetrix ID,
UniGene, Entrez Gene, and PubMed.

5.4 Statistics based on Annotation

Given a set of differentially regulated genes, it is fairly common to ask if certain pathways
are being perturbed in some way. This is a difficult question to answer given the fact that
most genes (75% of the genes on the HG-U95Av2 chip, for instance) are not mapped to
any pathway. As a surrogate, we can look for GO terms that appear to be 'concentrated’
in a set of differentially expressed genes using the GOHyperG function in the GOstats
package. If we find that the number of genes with a certain GO term are overrepresented
in the set of differentially expressed genes, then this may imply that a particular pathway
or function is being affected.

> library("GOstats")

index <- sample(1:12000, 100)

gn <- 1s(hgu95av2GENENAME) [index]

11ls <- unique(getLL(gn, "hgu95av2"))

hyp <- GOHyperG(lls, "hgu95av2", what = "MF")
index2 <- hyp$pvalues < 0.05

wh <- mget (names (hyp$pvalues) [index2], GOTERM)
terms <- sapply(wh, Term)

strwrap (terms[1:10], simplify = FALSE)

V VV V V Vv VYV
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[[11]
[1] "GTP cyclohydrolase activity"

[[2]]
[1] "GTP cyclohydrolase I activity"

[[31]
[1] "4-alpha-hydroxytetrahydrobiopterin dehydratase activity"

[[4]]
[1] "glycogen synthase kinase 3 activity"

[[5]]
[1] "poly(ADP-ribose) glycohydrolase activity"

[[61]

[1] "luteinizing hormone-releasing factor activity"

[[7]1]
[1] "hydrolase activity, hydrolyzing O-glycosyl compounds"

[[8]]
[1] "L-malate dehydrogenase activity"

[[9]]

[1] "arachidonate 12-lipoxygenase activity"

[[10]]

[1] "succinate dehydrogenase (ubiquinone) activity"

> hyp$pvalues[index2] [1:10]

G0:0003933 GO:0003934 GO:0008124 GO:0004696 GO:0004649 GO:0005183
0.01086957 0.01086957 0.01086957 0.01086957 0.01086957 0.01086957
G0:0004553 GO:0030060 GO:0004052 GO:0008177
0.01506284 0.02162243 0.02162243 0.02162243

Exercise 5
The above code is an example of something that could easily become quite tedious if it
had to be repeated more than one or two times. It is often worth the time and effort
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to write a small "'wrapper’ function that will perform all the required steps to take e.g.,
a vector of Affymetrix probe IDs and output a data.frame containing the GO ID, GO
term, p-value, the number of genes with that GO term in the set of significant genes,
and the number on the chip. The last two bits of information are good to know because
it is easy to get a very small p-value when there are few genes with a given GO term
on the chip (e.g., if there are three genes with a GO term XXX, and one is in the list
of significant genes, you will get a small p-value, but it is probably not an interesting
result).

If we have time (and you feel up to it), write a wrapper function to do this, outputting
the results as a data.frame.

6 Conclusion

We have demonstrated how one can use Bioconductor tools to go from the raw data in
CEL files to annotated reports of a select group of interesting genes. We presented only
one way of doing this. There are many alternatives also available via Bioconductor. We
hope that this lab serves as an example of a useful analysis and also of the flexibility of
Bioconductor.
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