Supplementary materials for the aroma.affymetrix lab session

<u>Henrik Bengtsson</u> & Terry Speed Dept of Statistics, UC Berkeley

August 7, 2007

BioC 2007

Affymetrix chips

Generic Affymetrix chip

6.5 million probes/chip

Feature size: $100\mu m$ to $18\mu m$ to $11\mu m$ and now $5\mu m$. Soon: $1\mu m$, $0.8\mu m$, with a huge increase in number of probes.

Abbreviated generic assay description

- 1. Start with target **gDNA** (genomic DNA) or **mRNA**.
- 2. Obtain *labeled single-stranded* target DNA fragments for hybridization to the probes on the chip.
- 3. After hybridization, washing, staining and scanning we get a **digital image**. This is summarized across pixels to *probe-level intensities* before we begin. They are our raw data.

Affymetrix probe terminology

Affymetrix SNP chips (Mapping 10K, 100K, 500K)

Single Nucleotide Polymorphism (SNP)

Definition:

A sequence variation such that two chromosomes may differ by a single nucleotide (A, T, C, or G).

A person is either AA, AB, or BB at this SNP.

Probes for SNPs

(Also MMs, but not in the newer chips, so we will not use these!)

Copy-number analysis with SNP arrays

	CRMA
Preprocessing (probe signals)	allelic crosstalk (or quantile)
Total CN	$PM = PM_A + PM_B$
Summarization (SNP signals θ)	log-additive PM only
Post-processing	fragment-length (GC-content)
<i>Raw total CNs</i> <i>R</i> = <i>Reference</i>	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$ chip <i>i</i> , probe <i>j</i>

	CRMA	Cross-hybridization:
Preprocessing (probe signals)	allelic crosstalk (quantile)	Allele A: TCGGTAGTACTC
Total CNs	PM=PM _A +PM _B	Allele B: TCGGTATCTACTC
Summarization (SNP signals θ)	log (PN	
Post-processing	fra((G(AB	
Raw total CNs	M _{ij} :	PM _A >> PM _B
		$PM_A \approx PM_B$
		PM _A << PM _B

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

	CRMA	4000	1744		
Preprocessing (probe signals)	allelic crosstalk (quantile)	3000			
Total CNs	PM=PM _A +PM _B				
Summarization (SNP signals θ)	log-additive (PM-only)	PM _T [∦]			
Post-processing	fragment-length (GC-content)	1000			
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$	o-	_		
			0 1000	2000	3000

4000

 PM_{A}

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Crosstalk calibration corrects for differences in distributions too

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Crosstalk calibration corrects for differences in distributions too

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

The log-additive model:

 $\log_2(PM_{ijk}) = \log_2\theta_{ij} + \log_2\phi_{jk} + \varepsilon_{ijk}$

sample *i*, SNP *j*, probe *k*.

Fit using robust linear models (rlm)

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Longer fragments \Rightarrow less amplified by PCR \Rightarrow weaker SNP signals θ

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Longer fragments \Rightarrow less amplified by PCR \Rightarrow weaker SNP signals θ

500K

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Normalize to get same fragment-length effect for all hybridizations

	CRMA
Preprocessing (probe signals)	allelic crosstalk (quantile)
Total CNs	PM=PM _A +PM _B
Summarization (SNP signals θ)	log-additive (PM-only)
Post-processing	fragment-length (GC-content)
Raw total CNs	$M_{ij} = \log_2(\theta_{ij}/\theta_{Rj})$

Normalize to get same fragment-length effect for all hybridizations

