Analyzing ChlIP-seq Data

Robert Gentleman + many others

FRED
CANCER RESEARCH



Outline

* discuss our experiment in some detail (this
IS more of a progress report)

* some results concerning the TF binding
sites (eboxes)

» some of the many QA methods we are
working on for short reads

« some of the data

* Indications of what part of the pipeline can
be handled by Bioconductor packages
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The clean experiment

» If you want to see how simple, and clean
things can be, have a look at

Genome-Wide Mapping of in Vivo Protein-DNA
Interactions, Johnson et al, Science, 2007, 316,

o 1497-1502

they had a mono-clonal antibody and a
consensus binding sequence that was 31nt long

by contrast, we have polyclonal antibodies
and a consensus sequence that is closer to
4nt long
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Myogenic bHLH factors regulate the

entire muscle program
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Neurogenic bHLH factors regulate the
entire neuron program
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Myod & NeuroD2

& Belong to the same family of bHLH protein

= Both dimerize with E-protein

& Both bind to the same consensus sequence
CANNTG (ebox)

Questions: How could these two factors maintain a
common core program but modulate cell-type
specific genes expression at the same time
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Experimental Design

Crosslink DNA and proteins (optional) and isolate chromatin
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Data analysis

+ Solexa:
Myod binding sites in three species (three antibodies)
Neurod2 binding sites
conserved regions adjacent to the binding sites

+ Compare to mMRNA expression profiling

+ Compare to microRNA expression profiling

+ Modeling protein-DNA interactions
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MyoD: The blue lines indicate regions used to raise antibodies
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ChiIP with MM cells
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Enrichment on Myog promoter
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ChIP -Seq Sample pr\ep Singleofr:I:IoPnte:;rlith;iDNA

~10 ng

l Repair ends

Blunt ended fragments
i Add Klenow exo™ with dATP
3'-dA overhang
l Ligate adapter
Adapter-modified ends

i Gel purification

Removal of unligated ADP
and size selection

i 100-300bp
PCR

ChIP-Seq DNA library
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Bioanalyzer analysis
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bHLH Transcription Factors

* the basic-Helix-Loop-Helix family of
transcription factors is known to form dimers
(hetero and homo) that typically (but not
always) bind eboxes

* The ebox sequence is CANNTG, which is
quite common
15.1 million (+ strand) Human
14.2 million (+ strand) Mouse
12.7 million (+ strand) Dog
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EBOXES

* there are 16 variants, some are reverse-
complement palindromes

* It is of some interest to develop algorithms
that can characterize the behaviors, ideally

identifying EBOXES that are likely to be
used by specific transcription factors etc.

» we divided the (mouse) genome into
regions: upstream, downstream, intron,
exon, none and counted frequencies of the
NN nucleotides
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Di-nucleotide Frequencies for eboxes in the repeat masked genome
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EBOXES

- we computed the distance between
sequential pairs of eboxes, separately for
each chromosome (and each organism)

» the distances show some interesting
characteristics (typically different ones for
different species) that indicate that some
distances are preferred.

* but most of it disappears when we use a
repeat masked genome instead
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EBOXES

* next steps:
look at eboxes that are conserved

eboxes by region (as done for the
nucleotide frequency)

eboxes that are occupied in our ChlP-seq
experiments
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The Data

* we used Solexa to do the sequencing:

8 lanes of data, one used for QA (a phage
genome is sequenced)

expt1: 1 lane for each antibody, for both MyoD
stimulated fibroblasts and unstimilated

something in the neighborhood of 4 million
reads/lane (fewer if we use unique reads)
* one thing many others have done, is to not
use unigue reads, but to restrict to reads
that map once to the genome

that seems sort of backwards to me
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Data Quality

* we have been working on a number of tools
to help assess quality
four different tutorials you can attend
- Martin Morgan (ShortRead)
- Patrick Aboyoun (Alignments)

- Herve Pages (Biostrings - matching)
- Michael Lawrence (rtracklayer - genome browser)

* most (but not all) of what we are doing is in

the current development versions of these
packages

* It does seem prudent to try aligning a few
tens of thousands of unmatched reads
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Data Quality

Aligned Short Reads Base Call Probability By Position
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Lane 1 Expt 1 Mouse

Unique reads: 2745164, unique reads close to linker: 10778

NM=0 NM<=1 NM<=2
NH=0 1896925 (69.1%) | 1713351 (62.4%) | 1641265 (59.8%)
NH=1 702248 (25.6%) | 801725 (29.2%) | 801453 (29.2%)
2<=NH<=10 55890 ( 2.0%) 74783 ( 2.7%) 91811 ( 3.3%)

11 <= NH <=100

41523 ( 1.5%)

56077 ( 2.0%)

65946 ( 2.4%)

101 <= NH <=1000

25732 ( 0.9%)

43303 ( 1.6%)

59836 ( 2.2%)

1001 <= NH <= 10000

17162 ( 0.6%)

33321 ( 1.2%)

41913 (1.5%)

10001 <= NH

5684 ( 0.2%)

22604 ( 0.8%)

42940 ( 1.6%)
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Data

« Some obvious questions

why do so few match (MAQ gets essentially the
same number)?

| had hoped that by taking those that match to
two or more places we would gain a lot (we don’t
seem to)

those that match a lot, are quite common and
will slow down any matching algorithm

repeat masking helps (but could be having other
effects)
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Is there signal?

MyoD expressed

chri + [ bw=3000 ]

Control Lanes

chri + [ bw=3000 ]
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Binding to CKM
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Cdh15

o3 | 26372500 | 128373000 | 125373500 | 12530 | 126370600 |

reychloe g

126375000 | wesarsso |

-
g

Medne pAs

myolute reg

myshite neg

THOD ST DhS
THODST DA ETIENET .
eyl N
WIS Te0 T |
o phus
1000 s mam N
S0 Neo
1200 ~ec ST i
o
Fend B0 WD 1 1P mi .il ] mni 1 ] imm | I |
VCSC Gone Prodoions Based o0 AetSeq. UniPnt. GonBank, ang Companatw Gerormics
Lo w—
20 Wiy Mutz Algmen! & Cotsevmtion
Mareral Cons L | ]
Nezeatrg Dlorrerts by |

FRED
CANCER RESEARCH




Things we can do in BioC

* matching to  depth of coverage
genome - peak finding

+ alignment to * read and write
genome
. - Genome browser

» finding TF binding track
sites Facks

 nucleotide * working on relating
frequencies two sets of intervals
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Contributions

* Yi Cao » Zizhen Yao

- Stephen Tapscott  Larry Ruzzo

* Phil Bradley * Michael Lawrence
« Deepayan Sarkar « Marc Carlson

* Herve Pages * Martin Morgan

» Patrick Aboyoun
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