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RNA-Seq: Comparison with Microarrays

Potential for surveying the entire transcriptome, including
novel, un-annotated regions.

Potential for determining gene structure and isoform level
expression using reads mapping to splice junctions.

Potential for making better presence/absence calls on regions.

Con: the assay is dependent on sequencing effort, low
expressed regions will be missed.




Protocol

The current standard protocol for RNA-Seq is

Extraction of RNA, polyA purification
Fragmentation of RNA

RT of RNA to cDNA

Ligation of adapters

Size selection ~ 200bp (perhaps ~300bp)
PCR amplification (15 rounds)

Injection into flowcell

This produces reads from polyadenylated RNA without strand
information.

Attempts are being made to make the assay strand specific and
to assay total RNA as well.




Data from D. melanogaster
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Image from Brenton Gravely




Base effect - single sample
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Base effect - multiple samples
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Base effect - different study (and prep)
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Base effect - different prep
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Base effect - different aligners

MAQ and ELAND, Human data
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Base effect - conclusions

Reproducible base effect - like probe affinities in microarrays.

Seems to be prep dependent. (0

Creates issues for comparing different
regions in the genome.

Less of an issue for comparing the
same region across samples!?




Mapping reads to the transcriptome
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Mapping transcripts
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Junction reads
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Junction reads, zoom
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Strategies for mapping to junctions

Map to known junctions.
Map to combination of known exons.

Map completely de-novo using canonical acceptor and donor
sites. The combinatorics makes this an intimidating approach.

Map de-novo, but constrain the search to canonical acceptor
and donor sites between and in transcribed region: transcript
assembly. This is the approach taken by TopHat.

Paired-end data will make de-novo mapping a real possibility.




Mapping - conclusions

Mapping to transcript space is not easy.
But essential for really understanding alternative splicing.

Constructing all novel splice junctions based on canonical
splice sites but only accepting splicing within genes (and small
regions upstream/downstream of the gene) in D. Melanogaster
yields 605,000,000 splice junctions.
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Detection in Cerevisiage
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Background: outside any transcribed feature, subtracted a boundary,
subtracted any region detected as transcribed in recent studies




Detection in Drosophila
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Replication

Sources of variation

. 4 good fit
Lane variation

Flowcell variation .
Poisson model

Library prep variation

Biological variation less good fit

Systematic differences

2: Is absolute quantification possible




Software

We have developed two R packages to help us

GenomeGraphs (Durinck, Bullard) : plots annotation and
experimental data along a genome. Makes it easy to construct

high quality images as well as to do data exploration. Available
from Bioconductor.

Genominator (Bullard, Hansen) : provides support for
managing, accessing and analyzing data oriented along a
chromosome, together with annotation. Uses a SQLite
backend.Works very well for unpaired reads mapped to the
genome.Available from our home page.

R> summarizeByAnnotation(expData, annoData, fx)




Genome Graphs, example
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