Differential expression analysis
for sequencing count data

Simon Anders




RNA-Seq
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Count data in HTS

* RNA-Seq
* Tag-Seq

Gene
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I Challenges with count data from HTS I
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discrete, positive, skewed I
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= no (log-)normal model ' )

3 | _
small numbers of replicates )

= no rank based or permutation
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sequencing depth (coverage) varies between samples
= “normalisation”

large dynamic range (O ... 10°) between genes
= heteroskedasticity matters



I Bioconductor packages I

Bioconductor packages for testing for differential
signal in sequencing count data:

 Based on negative-binomial distribution:
- edgeR (Robinson, Mcarthy, Smyth)

* DESeq (Anders, Huber)
» BaySeq (Hardcastle, Kelly)

e Based on Poisson distribution:
* DEGSeq (Wang et al.)



I Normalisation for library size I

o If sample A has been sampled deeper than sample
B, we expect counts to be higher.

 Simply using the total number of reads per sample
is not a good idea; genes that are strongly and
differentially expressed may distort the ratio of total
reads.

By dividing, for each gene, the count from sample A
by the count for sample B, we get one estimate per
gene for the size ratio or sample A to sample B.

e We use the median of all these ratios. EMBL i



Normalisation for library size
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Normalisation for library size

Fraquency
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Effect size and significance

o _| o _
™ (ep]

p=04 p = 0.0004
0 _ o _
A A

8

o _| o _|
A A

S
ey 1  esesresaacm v _|

2 —" G-

© o4 e TR © o4 g
0 — 0 —
o o




Variance depends strongly on the mean

0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02

variance
squared coefficient of variation

[ | I | [ I
10*0 10* 1072 1073 1074 1075 100 10 1072 10"3 1074 1075

mean mean

Variance calculated from comparing two replicates

Poisson V=
Poisson + constant CV V=y+ ap asities,
Poisson + local regression v = p + f(p?) BEEE



Technical and biological replicates
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RNA-Seq of yeast [Nagalakshmi et al, 2008]




Poisson ()

» The Poisson distribution turns up whenever things
are counted

» Example: A short, light rain shower with r drops/m?.

What is the probability to find k drops on a paving
stone of size 1T m??
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Poisson (II)

For Poisson-distributed data, the variance is equal
to the mean.

Hence, no need to estimate the variance

according to several authors: Marioni et al. (2008), Wang et al. (2010),
Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010)

 Really?
Is HTS count data Poisson-distributed?

To sort this out, we have to distinguish two sources
of noise.



Shot noise

e Consider this situation:

* Several flow cell lanes are filled with aliquots of the same
prepared library.

* The concentration of a certain transcript species is exactly the
same in each lane.

* We get the same total number of reads from each lane.

 For each lane, count how often you see a read from
the transcript. Will the count all be the same?




Shot noise

e Consider this situation:

* Several flow cell lanes are filled with aliquots of the same
prepared library.

* The concentration of a certain transcript species is exactly the
same in each lane.

* We get the same total number of reads from each lane.
 For each lane, count how often you see a read from
the transcript. Will the count all be the same?

 Of course not. Even for equal concentration, the
counts will vary. This theoretically unavoidable
noise is called shot noise.




I Shot noise I

 Shot noise: The variance in counts that persists
even if everything is exactly equal. (Same as the
evenly falling rain on the paving stones.)

e Stochastics tells us that shot noise follows a Poisson
distribution.

e The standard deviation of shot noise can be
calculated: it is equal to the square root of the
average count.



I Sample noise I

Now consider

» Several lanes contain samples from biological
replicates.

» The concentration of a given transcript varies
around a mean value with a certain standard
deviation.

e This standard deviation cannot be calculated, it has
to be estimated from the data.



I Technical and biological replicates I

Nagalakshmi et al. (2008) have found that

 counts for the same gene from different technical
replicates have a variance equal to the mean
(Poisson).

 counts for the same gene from different biological
replicates have a variance exceeding the mean
(overdispersion).

Marioni et al. (2008) have looked confirmed the first

fact (and confused everybody by ignoring the second
fact).



Technical and biological replicates
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Summary: Noise

We distinguish:
 Shot noise N

* unavoidable, appears even with perfect replication '
* dominant noise for weakly expressed genes

e Technical noise
 from sample preparation and sequencing

paindwod
3q ued

* negligible (if all goes well)

e Biological noise
* unaccounted-for differenced between samples
* Dominant noise for strongly expressed genes
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I Which null hypothesis? I

In a statistical test, we attempt to reject a null
hypothesis.

Given two samples with different experimental
conditions, which null hypothesis covers the question
of biological interest?

e The concentration of transcripts from gene i is
equal in the two samples.
> shot noise is all we need to know

 The difference of the concentrations is of a
magnitude as is expected between replicate
samples.

> Estimate of biological variability needed EMBL Hi



The negative-binomial distribution

A commonly used generalization of the Poisson distribution
with two parameters
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The NB distribution from a hierarchical model
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Testing: Null hypothesis

Model:

The count for a given gene in sample j come from
negative binomial distributions with the mean s, p,

- 2
and variance s;p, + 52 v(g).

S, relative size of library j

H, mean value for condition p
v(p,) fitted variance for mean p,

Null hypothesis:

The experimental condition r has no influence on
the expression of the gene under consideration:

Hp

— EMBL i
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variance

Model fitting

 Estimate the variance from replicates
e Fit a line to get the variance-mean dependence v(p)

(local regression for a gamma-family generalized linear model, extra math
needed to handle differing library sizes)
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I Testing for differential expression I

e For each of two conditions, add the count from all
replicates, and consider these sums K., and K as

NB-distributed with moments as estimated and
fitted.

e Then, we calculate the probability of observing the
actual sums or more extreme ones, conditioned on

the sum being k., +k.,, to get a p value.

(similar to the test used in Robinson and Smyth’s edgeR)



Differential expression
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genes in flies [data: Furlong group] EMBL i



DESeq

Empirical CDF

edgeR

Poisson

Type-I error control
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Type-I error control: Zoom
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Distribution of hits along the dynamic range
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Two noise ranges
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I Working without replicates I

One can infer the variance from a comparison of
different conditions.

 The variance will be overestimated, maybe
drastically.

* The power is smaller, maybe much smaller.

Still, this is the best one can do without replicates.



I Variance-stabilizing transformation I

The estimated variance-mean dependence allows to
derive a transformation that renders the count data
approximately homoskledastic.

] This is useful, e.g., as
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I Further use cases I

Similar count data appears in
» comparative ChiP-Seq
 barcode sequencing

and can be analysed with DESeq as well.



I Alternative splicing I

So far, we counted reads in genes.

To study alternative splicing, reads have to be
assigned to transcripts.

This introduces ambiguity, which adds uncertainty.

Current tools (e.g., cufflinks) allow to quantify this
uncertainty.

However: To assess the significance of differences
to isoform ratios between conditions, the
assignment uncertainty has to be combined with
the noise estimates.

This is not yet possible with existing tools.



I Coming soon: GLMs for DESeq I

 Until now, DESeq only supported simple
comparisons.

e There are many use cases requiring more general
models.

 Implementation of generalized linear models
(GLMs) for DESeq now ready for use.



The model

K;j ~ NB(j15. o)

flij

Sj

with  log

— Tij = ~ 1,0 + E ‘{jsfifjf

Ii;; read count for gene ¢ in sample j

s;  size factor for sample j

o,  dispersion for gene i

[t;;  expectation for gene 7 in sample j

n;;  linear predictor for gene ¢ in sample j

x;;  l-th for predictor sample j (indicator or quantitative)
By l-th regression coefficient for gene i

EMBLf




The model

 This is a generalized linear model:

e Link function: log link, with sample-dependent size factors
 Family: negative binomial with known dispersion

 The dispersion is estimated from the fitted variance-
mean relation, reading off at the sample average:
'LL,

o ra

Gi=o(@)/@ with =Y
J

S

e The negative binomial is in the exponential family if
the dispersion is given.




I DESeq with GLMs: Applications I

 Factorial designs with interactions
 Paired samples

» Regression of expression on genotype, etc.

Alternative splicing

 Count for each exon, then fit a model for each gene, and test
the interaction between exon and experimental condition.

Methylation (HELP)
ChIP-Seq: ChIP vs input crossed with condition



Conclusions

 Proper estimation of variance between biological
replicates is vital. Using Poisson variance is
Incorrect.

» Estimating variance-mean dependence with local
regression works well for this purpose.

 The negative-binomial model allows for a powerful
test for differential expression

 Preprint on Nature Preecedings:
“Differential expression analysis for sequence count data”

 Software (DESeq) available from Bioconductor
and EMBL web site. EMBL



» Co-author: Wolfgang Huber

* Funding: European Union (Marie Curie Research and
Training Network “Chromatin Plasticity”) and EMBL



Negative-binomial model (1)

» Suppose, we have m replicates of a given condition,
and obtain counts for n genes.

e The concentration of gene i in replicate j is a

random variable Qij, which is i.i.d. for j=1,...,m
with mean g,, and variance o2

» Let K; be the count value for gene i in replicate j. Its

expectation value is s;p; with size factor s..

- Given Q;=g;, the sequencing is a Poisson process
and hence: K;; ~ Pois(s;q;;).



Negative-binomial model (1)

» If Q; has mean y; and variance 0, what is the the
marginal (“mixing”) distribution of K;; ~ Pois(s,q;;) ?
o If one assumes Qij to be gamma-distributed, the

answer is:
» K; follows a negative binomial (NB) distribution

. . ,
with mean s,g,, and variance s q;, + 5,07.



I Model fitting I

» Estimate relative library sizes s;.

« Within a set of replicates, calculate for each gene

sample mean and sample variance of k;/s..

 To get an unbiased estimate of 62, subtract an

“average shot-noise” of

* Fit a line through the graph of mean and variance
estimates (with a gamma-family local regression).

Model:
Kij follows a negative binomial (NB) distribution with

i 2 seesiidad
mean sq;, and variance s,q;, + s,0>.



Diagnostic plot for variance fit
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Variance residuals distribution
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