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MACS, CisGenome, SISSRs and other

peak calling algorithms: differences and
practical use




ChlIP-Seq signal properties

* Only 5" ends of ChIPed fragments

oot are sequenced

tl.‘:s v Shifted read distribution
}il;%‘lfl;ﬁtffééi‘ % v Expected symmetry between
IS-;”,"\iiffi*;ﬁ% ﬁ Watson/Crick read distributions
i

Figure source: Valouev et al. Nat. Methods Sept 2008
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Peak finding overview

1. Build strand-specific profiles
. How (window-scan, KDE...)?
. Filter duplicates?
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Density profile
value

2. Combine profiles (shift/extension)
. Shift/extension estimation?
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Density profile value

1. Define enriched regions/peaks
. Statistics used
. What boundaries should be reported?
. What score to use (ratio, p-val, g-val)?
. Compute/estimate a FDR?

Figure source: Valouev et al. Nat. Methods Sept 2008
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Main aspects of peak

finders

Artifact
filtering:
User input strand-based/
Profile Peak criteria® Tag shift Control dataP Rank by FDR< parametersd duplicate® Refs.
CisGenome Strand-specific 1: Number of reads Average Conditional Number of 1: Negative Target FDR, Yes / Yes 10
vi.1 window scan in window for highest binomial used to reads under binomial optional window
2: Number of ranking peak estimate FDR peak 2: conditional width, window
ChIP reads minus pairs binomial interval
control reads in
window
ERANGE Tag 1: Height cutoff High quality Used to calculate P value 1: None Optional peak Yes / No 4,18
v3.1 aggregation High quality peak peak estimate, fold enrichment 2: # control height, ratio to
estimate, per- per-region and optionally # ChIP background
region estimate, estimate, or P values
or input input
Aggregation Height threshold Input or NA Number of 1: Monte Carlo Minimum peak Yes / Yes 19
FindPeaks of overlapped estimated reads under simulation height, subpeak
v3.1.9.2 tags peak 2: NA valley depth
F-Seq Kernel density s s.d. above KDE Input or KDE for local Peak height 1: None Threshold s.d. No / No 14
v1i.82 estimation for 1: random estimated background 2: None value, KDE
(KDE) background, 2: bandwidth
control
GLITR Aggregation Classification User input tag Multiply sampled Peak height 2: # control Target FDR, No / No 17
of overlapped by height extension to estimate and fold " # ChiIP number nearest
tags and relative background class enrichment neighbors for
enrichment values clustering
MACS Tags shifted Local region Estimate from Used for Poisson P value 1: None P-value threshold, No / Yes 13
v1l.3.5 then window Poisson P value high quality fit when available 2: # control tag length, mfold
scan peak pairs ~ # ChiP for shift estimate
PeakSeq Extended tag Local region Input tag Used for g value 1: Poisson Target FDR No / No 5
aggregation binomial P value extension significance of background
length sample enrichment assumption
with binomial 2: From
distribution binomial for
sample plus
control
QuEST Kernel density 2: Height Mode of local KDE for g value 1: NA KDE bandwidth, Yes / Yes 9
v2.3 estimation threshold, shifts that enrichment and 2: # control peak height,
background ratio maximize empirical FDR T # ChIP subpeak valley
strand cross- estimation as a function of depth, ratio to
correlation profile threshold background
SICER Window scan P value from Input Linearly rescaled g value 1: None Window length, No / Yes 15
v1i.02 with gaps random for candidate peak 2: From Poisson gap size, FDR
allowed background rejection and P P values (with control) or
model, enrichment values E-value
relative to control (no control)
SiSSRs Window scan N, — N_ sign Average Used to compute P value 1: Poisson 1: FDR Yes / Yes 11
vli.4 change, N+ nearest paired fold-enrichment 2: control 1,2: N, + N_
N_ threshold in tag distance distribution distribution threshold
regionf
spp Strand specific Poisson P value Maximal Subtracted before P value 1: Monte Carlo Ratio to Yes / No 12
v1l.0 window scan (paired peaks strand cross- peak calling simulation background
only) correlation 2: # control
# ChIP
USeq Window scan Binomial P value Estimated or Subtracted before qg value 1, 2: binomial Target FDR No / Yes 20
v4.2 user specified peak calling

2: # control
# ChIP

Pepke et al ; Nature Methods 6, S22 - S32 (2009)




PeakSeq

ARTICLES

nature
biotechnology

PeakSeqg enables systematic scoring of ChlP-seq
experiments relative to controls

Joel Rozowskyl, Ghia Fuskirchen?, Raymond K Auerbach?, Zhengdong D Zhangl, Theodore Gibson!,
Robert Bjornson?*, Nicholas Carriero*, Michael Snyder!? & Mark B Gerstein!>*
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PeakSeq

+  Sequence tags from certain location are not unique in the genome
- Tags that don’t uniquely map are usually discarded

Table 1 Genome mappability fraction

Nonrepetitive sequence Mappable sequence
Organism Genome size (Mb) Size (Mb) Percentage Size (Mb) Percentage
Caenorhabditis elegans 100.28 S87.01 86.826 oS93.26 093.0%6
Drosophila melanogaster 168.74 117.45 69.6%6 121.40 7 1.99%
Mus musculus 2,654.91 1,438.61 54 .26 2,150.57 81.0°%6
Hormo sapiens 3,080.449 1,462.69 a47 .56 2,451 .96 79.6%6

For four common model organisms——worm, fruit fly, mouse and human—we have determined the fraction of each
genome sequence that is nonrepetitive as well as the fraction that is mappable using 30-nt sequence tags. The genome
coverage achievable from genomic tiling arrays corresponds to the nonrepetitive fraction of a genome whereas the
mappable coverage is what is achievable by tag-based sequencing approaches. We also determined that as the length
of the sequence tags is increased beyond 30, the number of nucleotides in the genomes that are uniquely mappable is
2,452 Mb (79.6%6) for 30-nt reads, 2,586 Mb (84.0%%) for 40 nt, 2,669 Mb (86.7°%) for 50 nt, 2,720 Mb (88.3%5)
for 60 Nt and 2,750 Mb (89.3%%) for 70 nt.

=> The fraction of the “mappable” genome is usually a parameter of peak
finders
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PeakSeq

+  Background models are usually assumed to follow a Poisson statistics
- Unfortunately, the real background results from a multiple effects

1. Mappability

2. Chromatin structure (e.g. accessibility/openness)

l Pol Il ChlIP-seq
PPN PIPURTRFI FIV R ERRT T T WY Y

Input DNA
ki A L. J " Ak diad
I Interferon-y—stimulated STAT1 ChiIP-seq
b i ' i
Interferon-y—stimulated input DNA
A "y PRI e

Enrichments in reference sample is
not randomly placed

N.B.: See also Kharchenko et al. Nat biotech 2008
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== Pol Il ChIP-seq

«++ Input DNA

«— INF-y-stimulated STAT1 ChIP-seq
«++ INF-y-stimulated input DNA

— Mappable bases
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Position relative to TSS (bps)

Chromatin structure is the major factor
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PeakSeq

Step 1: Signal map(s) construction

Tags

I
I
I
I
I
I
I
I
I
Signal map :

1. Tag extension (user input)
2. Signal map : count for each bp
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PeakSeq

Step 2: Determination of potential regions using simulated bg

100
80
60
0
; Threshold
ORI PSPV VITTY RPN I
| Il I Potential target S|tes
B G LN AL AU L LA TN (AT vnu TR CARAT T IO A f
AL R | |‘|‘ |”\ {{ dl i “r ” ,‘] ‘ ' ! | ,\
| Mappablllty map
‘ GRAMD4 ‘ TBC1 D22A
._. H, H“ h H | H* [ + ] [ | | |
il o i I HHHH
CELSR1 CERK

1. Uses Poisson statistics
2. Work per window (1 Mb) and correct signal (of different windows)

using mappability maps
3. Given a user-defined target FDR, a threshold is computed
4. Keep regions above threshold
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PeakSeq

Step 3: Normalizing control to ChlP-seq sample
400

400

Pf= 1
350 1

350 1 slope = 0. 96
1 Correlation = 0.77

250 1

W
o
o
W
(=)
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150 H
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0

150 1
1001 .
504 8%

0 / : ' . . . : . . . : : :
0 50 100 150 200 250 300 350 400 0O 50 100 150 200 250 300 350 400
Input DNA Input DNA

ChIP-seq sample
N
3
ChlP-seq sample
N
3

Slope = 1.24
Correlation = 0.71

1. Count tags in bins along chromosome for ChlP-seq and reference
2. Correct tag counts using slope of linear regression
3. Pf=fraction (i.e. in [0,1]) of potential peaks to exclude
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PeakSeq

Step 4: Scoring enriched target regions relative to control

80
60
40
20

ChlIP-seq sample
 OITVRRTOIN M TSR TP UR7TV RPN PP W

100 | | L Il

go Potential target sites
60
40
20

Normalized input DNA
b e o b bbbl i

Enriched target sites |

1.  Compute fold enrichment for each candidate (defined in step 2)
2. Compute p-value from binomial distribution
3. Correct for multiple testing and call enriched regions
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What have we learned so far

+ The size of the mappable genome varies with your tag
length

» Background is not accurately modeled by Poisson
» Use of input DNA is recommended

* The scaling factor between ChIP and input sample is not
directly the tag ratio
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MACS
Method

Model-based Analysis of ChlIP-Seq (MACS)

Yong Zhang**, Tao Liu*", Clifford A Meyer”, Jérome Eeckhoute®,
David S Johnson*, Bradley E Bernstein3?, Chad Nussbaum?,
Richard M Myers¥, Myles Brown’, Wei Li# and X Shirley Liu*

Genome Biology 2008, 9:R 137 (doi:10.1186/gb-2008-9-9-r137)

- Step 1: Modeling the tag shift

— Waisontage 1. Scan genome with a window of user-

—— Crick tags

defined sonication size
2. Keep the best 1000 (or less) peaks
having a fold enr. > mfold (default 32,
relative to random model)
Separate Watson/Crick tags
Shift size is modeled as the distance
between the modes of the Watson and
Crick peaks

Tag percartage (%)
Toam navanedamna e

B w

0,

=300 =200 -100 0 100 200 300

Location with respact to the center of Watson and Crick peaks (bp)
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MACS

- Step 2: Peak detection
1. Shift every tag by d/2

2. Slide a 2d window across the genome to find candidate peaks with significant
tag enrichment (according to Poisson distribution, default p-value = 10-°)

3. Merge of overlapping peaks
4. Report:

« fold enrichment for called peaks: ratio between tag counts and expected
using Poisson distribution (using input data if provided)

» Position with highest pile-up is defined as the summit

« Empiric FDR if control sample is provided (sample swap)

6/8/10
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MACS : key aspects

- Adaptive Poisson distribution to model background
+ Usually, this A is computed once i.e. Agg
* Here, they use a dynamic A, to account for local biases :
Noca = Max(Agg Ak Asi, Aqok)

local ~—

- Model the tag shift using the bimodal property of ChlP-seq reads
using high confidence peaks (fold cutoff)

- Automatic removal of duplicated tags in excess of what is expected
given the sequencing depth (using p-val cutoff of 10-°, binomial dist.)
v~ Always check the default setting for duplicates in your peak finder
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CisGenome

Nature Biotechnology 26, 1293 - 1300 (2008)
Published online: 2 November 2008 | doi:10.1038/nbt.1505

An integrated software system for analyzing ChlP-chip
and ChlP-seq data

Hongkai Jil, Hui Jiangg, Wenxiu Mag, David S Johnsonﬂfﬁ, Richard M Myers§
& Wing H WongéfZ

- Two pass algorithm, globally similar to MACS
* First pass:

» scan similar to MACS (100 bp window) to evaluate DNA fragment
length i.e. tag shift value

* FDR estimation (based on non overlapping window of 100 bp) from
following statistics:

* One sample analysis : based on a negative binomial

* Two sample analysis : tag count in IP bin evaluated against tag
sum n; (IP+ref) using binomial

6/8/10
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CisGenome

- Second pass after tag shift : principle similar to first scan (FDR also
recomputed):

» Overlapping windows below user defined FDR are merged (best FDR is
kept). In two sample analysis, the best fold change is also reported

» Regions that do not exhibit bimodal read distribution (e.g. b/w strands) are
filter out (significant strand-specific peak expected)

» Peak boundaries may be refined using the read distributions (on by default)

659ﬁ5000 | 6594FOOO
2000 -2000
IP total 10004 F A 1000
8 - -0
1P &' (forward) 1000
IP3%nweme)1ooo‘
0.- e
Gene NPAS4 wlll}s—>->H4+>

e ———
65945000 65946000
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SISSRs

Published online 6 August 2008 Nucleic Acids Research, 2008, Vol. 36, No. 16 5221-5231
doi:10.1093/nar/gkn488

Genome-wide identification of in vivo protein-DNA
binding sites from ChIP-Seq data

Raja Jothi, Suresh Cuddapah, Artem Barski, Kairong Cui and Keji Zhao*

Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, MD 20894, USA

- DNA fragment length estimated from the data
+ No tag shift / extension

- FDR estimate from Poisson model or from reference dataset
* Reports TFBS location estimation i.e. very small region
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SISS

ChIP-Seq DNA Fragments
A

Net Tag Count
A

Mapped reads
A
r Y

RS

Actual binding site
—_—

Region /’Mm

Sequenced A

MV

AN

—»—»—» \

Anti-sensa tags

Reference genome

| +ve to —ve transition point (f),
a candidate binding site

+ve,

| |
| |
1 1
1 |
1 1

\ -ve ‘
LS ]
w-bp window

Net tag-count (c;) = # sense tags —
# anti-sense tags in window i
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4 N
Parameter estimation

- J

' N

Compute net tag-count (c)
for every window i

" A

2 N
Window, i=1

. »

<
y

A

4 N\
lfej<O&thereexistsak < i
st. ¢,>0 &forall k<j<i,c=0

»

Yes
v
4 A
Transition point, = midpoint
between kand i
. v
Yes
F r N
Following conditions satisfied?
1. # Sense tags (p)
between t-Fandtisz E
2. # Anti-sense tags (n) N ( ) )
between fand t+ Fis2E |og More windows
3.p+nzR 2 exp.by chance| | to go?
- J
Yes / No
4 N 4 \
Report tas a binding site STOP
- > " J
Jothiet al ;

NAR 36, 16 (2008)



What have we learned more

« The size of the mappable genome varies with your tag length

« Background is not accurately modeled by Poisson
e Use of input DNA is recommended

» If no input is available, favor methods using negative binomial (or
local poisson)

« The scaling factor between ChIP and input sample is not the tag ratio
* Fragment length can be estimated from top peaks or
given as input

+ Usually duplicate reads are filtered, a gentler approach
might be better or no filtering (?)

+ Enrichment is usually reported, sometimes with FDR/qg-
value ; methods vary
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Peaks vs enriched regions (TF ChlP-Seq)

chr2R (Drosophila (April 2006)) - Integrated Genome Browser 6.1

oo o

File Edit View Bookmarks Tools Help

16,822,403 : 16,840,160

0 _ Mef2 Known TFBS
MACS summits (in Act57B_-539/ 2 enhancer)

MACS peaks

Lsissks 192 ol |

MACS peaks ..
SISSRS 1P] () n 1

16,852,000

MACS groups 2 TFBS
- - (Data Access  Selectioninfo | Search  Siiced View _Graph Adyster reyid tog e‘ther mlght need to
s | use a “peak splitter” or

check how other peakfinder
et behave (here SISSRs)

Factor Mef2
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' 'IGB — Another Mef2 known TFBS

File
' | |
| ||
| | ||
| | |
[ | I
[ ] I
MACS peaks I
I | I |
MACS peaks . |
555555555555 [ | | 1 |
5,818,000 5,820,000 5,822,000 5,824,000 | 5,826,000 5,828,000 5,830,000 5,832,000 5,834,000

» Check different parameter settings together with
positive controls
* Visualize to get a feel
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Some options might look great...

-br option in cisgenome hts_peakdetectorv2* tool

NO refinement “~br 0" | IEEEGGEGNGEGN I
Boundary refinement “~br 1” |JIl}

ol o, s e et .|||”§ Hhhd‘” HH“”H"”I.H|.||||||m............ }

Forward strand signal
...... - ...||lHHHEH“Ih.....lllm ”HH\|||\Hllmm........”...‘.H........‘...‘.‘..

Reverse strand signal
........ e ||||HHHH|“HMnHHHWHMnu

Asking for boundary refinement may cause loss of peaks:
peak finders assumes a single peak is in the region...

6/8/10
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Window based detection (MACS, CisGenome,...) will
report unigue regions encompassing several binding sites

A post processing to split regions into multiple peaks is
needed

PeakSplitter developed by Mali Salmon in EBI
The new beta version of MACS integrate PeakSplitter

Tools like SISSR and QUEST implement a different
approach (detect summit then extend)
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The different types of ChlP-seq signal
1. Proteins binding DNA in a

wm CTCF motif

ngtson (+_) reads
BT L — . - site-specific fashion
o . | => Narrow peaks, hundreds
(RPM) .
b - Position (bp) I-5000 o Of bp Wlde

Pepke et al ; Nature Methods 6, S22 - S32 (2009)
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The different types of ChlP-seq signal

1. Proteins binding DNA in a site-specific
, 54 NS i fashion
Watson (+) reads |
;r;;ryss(%rl:i,(':&l()(-) 0. —_— ‘A
-5.3766 '

8.3653

Total reads
(RPM)
0.0586 _ ——— _

b Pt t) 001 2. RNA Poal Il like signal

peatipa] | => Mixture of strong binding
reads (RPM) - whe A b ok -G

wl T o (at TSS) and broader

Is‘suﬁa"so ' . enrichment over several

Position (bp) |-500 bp— Kb (aCtive transcri ption)
ZFP35 W m— S;qu

Pepke et al ; Nature Methods 6, S22 - S32 (2009)
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The different types of ChIP-seq signal

a 1. Proteins binding DNA in a site-specific fashion
54 wm CTCF motif
Watson (+) reads
;r;g:duss(%m(—) 1 - P o
-5.3766 '

8.3653 _

Total reads
(RPM) 00586 | ‘“-‘ o
b Position (bp) I-50be| 2. RNA Pol Il Signal
RNA polymerase ||
Watson (+) :2363133 b ‘
minus Crick (=) . R TUNEY P ORI R - ,-Jh, VI
reads(RPM)724 7— r. i Al ey ey
16.9 _
Jir-Vions l
0_L Ahg._
Position (bp) |-500 bp—|
ZFP36 w>>>>>>>>-- e RecfSeq .
g 3. Chromatin marks
0.752 H3K36me3
T H3K4me3,active promoters
0 HMMMM i .mwuu.m sotbadiadid e MMMMJ :
ors2 " T a— H3K36me3, active genes
T reacs " i t | i iy H3K27me3, repressed regions
0 I
- Position (bp) I 10000000 => Enrichment from nucleosome size domain
e — OoLIG2 T
genee it ouer] S to several hundreds of Kb

6/8/10
EMBL



Example of Histone marks

» Two marks, at same dev. Stage:
* H3K4me3 : active promoters (~ short mark)
+ H3K36me3 : active genes (~ long mark)

=> (Good test case b/c one should see both marks at active genes

* Analyzed with (in progress):
« SISSRs failed at finding anything

» CisGenome also (still investigating the pb)
« Will show MACS and QUEST results
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H3K4me3 ChIP coverage

MACS H3K4me3 (RZ4)

QUuFST H3K4me3 peaks (+)

flyBaseGene (+)

flyBaseGene (-)

MACS H3K36me3 ()

QUuFST H3K36me3 peaks (4)

L_OUEST H3K36me3 regs () |

MACS H3K36me3

'T

H3K4me3 ChIP coverage (0, 1,000)

Ak i

MACS H3K4me3 (RZ4) (1, 100)

10,844,000 10,846,000 10,848,000 : 10,852,000 10,854,000 10,856,000 10,858,000

MACS H3K36me3 (1, 100)

I W e

QuUEST norm,/ChIP H3K36me3 (10, 22.1)

Good agreement between the tools
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H3K4me3 ChIP coverage

MACS H3K4me3 (RZ4)

QuFST H3K4me3 neaks (+)

flyBaseGene (+)

MACS H3K36me3

QUEST norm. ChIP H3K36me3

H3K36me3 ChIP coverage

H3K4me3 ChIP coverage (0, 1,000)

‘vuu... N P «.l

IMAcs H3K4me3 (RzZ4) (1, 100)

- ook o a b - . Y — A o _.Al . —m—

10,970,000 10,980,000 10,990,000 11,000,000 11,010,000

MACS H3K36me3 (1, 100)
QUEST norm. ChIP H3K36me3 (10, 22 1)

- . . -
IH3K36me3 ChIP coverage (0, 300)
T W WY M.—M.—A“‘—

MACS suggests more active promoters and genes: predictions correlate
=> |s QUEST too stringent?
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H3K4me3 ChIP coverage (0 1,000)

H3K4me3 ChIP coverage ‘L

H' [

A !

s H3Kdme3 (RZ4) (1, 100)
MACS H3K4me3 (RZ4) I_ ' ‘ ‘L

QuFST H3K4me3 neaks (+) ‘ |

flyBaseGene (+)

11,810,000 11,815,000 11,820,000 11,825,000

MACS H3K36me3 (1, 100)

MACS H3K36me3

——

—
QUEST norm. ChIP H3K36me3 (10, 22.1)

QUEST norm. ChIP H3K36me3

A,
H3K36me3 ChIP coverage (0, 300)
H3K36me3 ChIP coverage I

Detection of gene within gene example
=> Would you trust this with only one of the two marks?

6/8/10




You might want to run different tools and check how they
behave on your datasets

Do you have reference sample or not?

Detection method should be adapted to signal type i.e.
SISSR certainly has a too strong peak assumption for
(long) histone marks?

Laajala et al compared results with different peak finders
— using TF signal only (BMC Genomics 2009, 10:618)
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Visualization is important

- Assessment of the data quality e.g. positive controls,
background

- Determine cutoffs (looking at positive controls)
« Compare peak finders outputs

- Integration of data / co-visualization

* Your brain catches aspects that computers can'’t : hypothesis
generation.
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Thanks !

You
Eileen Furlong
Robert Zinzen / Stefan Bonn
Nicolas Delhomme
Ismael Padioleau
Martina Braun
Furlong Lab
GeneCore
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