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Count data in HTS

• RNA-Seq
• Tag-Seq

Gene       GliNS1  G144    G166    G179    CB541   CB660
13CDNA73   4       0       6       1       0       5
A2BP1      19      18      20      7       1       8
A2M        2724    2209    13      49      193     548
A4GALT     0       0       48      0       0       0
AAAS       57      29      224     49      202     92
AACS       1904    1294    5073    5365    3737    3511
AADACL1    3       13      239     683     158     40
[...]

• ChIP-Seq
• Bar-Seq
• ...



Challenges with count data from HTS

discrete, positive, skewed 
➡ no (log-)normal model

small numbers of replicates 
 ➡ no rank based or permutation 

methods

sequencing depth (coverage) varies between samples 
 ➡ ”normalisation”

large dynamic range (0 ... 105) between genes
 ➡ heteroskedasticity matters



Normalisation for library size

• If sample A has been sampled deeper than sample 
B, we expect counts to be higher.

• Simply using the total number of reads per sample 
is not a good idea; genes that are strongly and 
differentially expressed may distort the ratio of total 
reads.

• By dividing, for each gene, the count from sample A 
by the count for sample B, we get one estimate per 
gene for the size ratio or sample A to sample B.

• We use the median of all these ratios.



Normalisation for library size



Normalisation for library size



Effect size and significance



Variance calculated from comparing two replicates

    Poisson v = μ 
    Poisson + constant CV v = μ + α μ2

    Poisson + local regression v = μ + f(μ2) 

Variance depends strongly on the mean



Technical and biological replicates

RNA-Seq of yeast [Nagalakshmi et al, 2008]

biological replicates
technical replicates



Poisson (I)

• The Poisson distribution turns up whenever things 
are counted

• Example: A short, light rain shower with r drops/m2. 
What is the probability to find k drops on a paving 
stone of size 1 m2?



Poisson (II)

For Poisson-distributed data, the variance is equal 
to the mean. 

Hence, no need to estimate the variance 
according to several authors: Marioni et al. (2008), Wang et al. (2010), 
Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010)

• Really?
Is HTS count data Poisson-distributed?

To sort this out, we have to distinguish two sources 
of noise.



Shot noise

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library. 
• The concentration of a certain transcript species is exactly the 

same in each lane. 
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from 
the transcript. Will the count all be the same?



Shot noise

• Consider this situation:
• Several flow cell lanes are filled with aliquots of the same 

prepared library. 
• The concentration of a certain transcript species is exactly the 

same in each lane. 
• We get the same total number of reads from each lane.

• For each lane, count how often you see a read from 
the transcript. Will the count all be the same?

• Of course not. Even for equal concentration, the 
counts will vary. This theoretically unavoidable 
noise is called shot noise.



Shot noise

• Shot noise: The variance in counts that persists 
even if everything is exactly equal. (Same as the 
evenly falling rain on the paving stones.)

• Stochastics tells us that shot noise follows a Poisson 
distribution.

• The standard deviation of shot noise can be 
calculated: it is equal to the square root of the 
average count.



Sample noise

Now consider
• Several lanes contain samples from biological 

replicates.
• The concentration of a given transcript varies 

around a mean value with a certain standard 
deviation.

• This standard deviation cannot be calculated, it has 
to be estimated from the data.



Technical and biological replicates

Nagalakshmi et al. (2008) have found that
• counts for the same gene from different technical 

replicates have a variance equal to the mean 
(Poisson).

• counts for the same gene from different biological 
replicates have a variance exceeding the mean 
(overdispersion).

Marioni et al. (2008) have looked confirmed the first 
fact (and confused everybody by ignoring the second 
fact).



Technical and biological replicates

RNA-Seq of yeast [Nagalakshmi et al, 2008]

biological replicates
technical replicates
Poisson noise



Summary: Noise

We distinguish:
• Shot noise

• unavoidable, appears even with perfect replication

• dominant noise for weakly expressed genes

• Technical noise 
• from sample preparation and sequencing
• negligible (if all goes well)

• Biological noise
• unaccounted-for differenced between samples
• Dominant noise for strongly expressed genes

can be
com

p uted
needs  to be  estim

ated
from

 t he da ta



The negative-binomial distribution

A commonly used generalization of the Poisson distribution 
with two parameters



The NB distribution from a hierarchical model

Biological sample 
with mean  and µ
variance v

Poisson distribution 
with mean q and 
variance q.

Negative binomial 
with mean µ and
variance q+v.



Testing: Null hypothesis

Model:
The count for a given gene in sample j come from 
negative binomial distributions with the mean sj μρ 
and variance  sj μρ + sj

2
 v(μρ).

Null hypothesis:
The experimental condition r has no influence on 
the expression of the gene under consideration:

μρ1
 = μρ2

sj relative size of library j
μρ mean value for condition ρ
v(μρ) fitted variance for mean μρ



Model fitting

• Estimate the variance from replicates
• Fit a line to get the variance-mean dependence v(μ)

(local regression for a gamma-family generalized linear model, extra math 
needed to handle differing library sizes)



Testing for differential expression

• For each of two conditions, add the count from all 
replicates, and consider these sums KiA and KiB as 
NB-distributed with moments as estimated and 
fitted.

• Then, we calculate the probability of observing the 
actual sums or more extreme ones, conditioned on 
the sum being kiA+kiA, to get a p value.

(similar to the test used in Robinson and Smyth's edgeR)



Differential expression

RNA-Seq data: overexpression of two different 
genes in flies  [data: Furlong group]



Type-I error control

Comparison of 
replicates: 

no differential 
expression,

expect uniform 
p values
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Distribution of hits along the dynamic range

all genes
differentially expressed according to DESeq  
differentially expressed according to edgeR 



Two noise ranges

dominating noise How to improve power?
shot noise (Poisson) deeper sampling
biological noise more biological replicates



Alternative splicing

• So far, we counted reads in genes.
• To study alternative splicing, reads have to be 

assigned to transcripts.
• This introduces ambiguity, which adds uncertainty.
• Current tools (e.g., cufflinks) allow to quantify this 

uncertainty.
• However: To assess the significance of differences 

to isoform ratios between conditions, the 
assignment uncertainty has to be combined with 
the noise estimates.

• This is not yet possible with existing tools.



Working without replicates

One can infer the variance from a comparison of 
different conditions.
• The variance will be overestimated, maybe 

drastically.
• The power is smaller, maybe much smaller.

Still, this is the best one can do without replicates.



Variance-stabilizing transformation

The estimated variance-mean dependence allows to 
derive a transformation that renders the count data 
approximately homoskledastic.

This is useful, e.g., as 
input for the dist 
function.

[Tag-Seq of neural stem 
cell tissue cultures,
Bertone Group]



Further use cases

Similar count data appears in
• comparative ChiP-Seq
• barcode sequencing
• ...
and can be analysed with DESeq as well.



Conclusions

• Proper estimation of variance between biological 
replicates is vital. Using Poisson variance is 
incorrect.

• Estimating variance-mean dependence with local 
regression works well for this purpose.

• The negative-binomial model allows for a powerful 
test for differential expression

• Preprint on Nature Preecedings:
“Differential expression analysis for sequence count data”

• Software (DESeq) available from Bioconductor 
and EMBL web site.



*

• Co-author: Wolfgang Huber

• Funding: European Union (Marie Curie Research and 
Training Network “Chromatin Plasticity”) and EMBL

Google forDESeq



Advertisement

HTSeq

A Python package to process
and analyse HTS data



HTSeq: Features

• A framework to process and analyse high-
throughput sequencing data with Python

• Simple but powerful interface
• Functionality to read, statistically analyse, transform 

sequences, reads, alignment
• Convenient handling of position-specific data such 

as coverage vectors, or gene and exon positions

• Well documented, with examples for common use 
cases.

• In-house support



HTSeq: Typical use cases

• Analyse base composition and quality scores for 
quality assessment of a read

• Trim of adapters in snRNA-Seq
• Calculate coverage vectors for ChIP-Seq
• Assign reads to genes to get count data from RNA-

Seq (incl. handling of spliced reads, overlapping 
genes, ambiguous maps, etc.)

• Split reads according to multiplex tags
• etc.



Quality assessment with HTSeq



HTSeq: Availability

• HTSeq is available from
http://www-huber.embl.de/users/anders/HTSeq

• Testers wanted



Negative-binomial model (I)

• Suppose, we have m replicates of a given condition, 
and obtain counts for n genes.

• The concentration of gene i in replicate j is a 
random variable Qij, which is i.i.d. for j=1,...,m 
with mean qi0 and variance σi².

• Let Kij be the count value for gene i in replicate j. Its 
expectation value is sjμi with size factor sj.

• Given Qij=qij, the sequencing is a Poisson process 

and hence:  Kij  Pois( sjqij ).



Negative-binomial model (II)

• If Qij has mean μi and variance σi², what is the the 

marginal (“mixing”) distribution of Kij  Pois( sjqij ) ?

• If one assumes Qij to be gamma-distributed, the 
answer is:

• Kij follows a negative binomial (NB) distribution 
with mean sjqi0 and variance sjqi0 + sjσi².



Model fitting

• Estimate relative library sizes sj.

• Within a set of replicates, calculate for each gene 
sample mean  and sample variance of kij/sj.

• To get an unbiased estimate of σi², subtract an 
“average shot-noise” of 

• Fit a line through the graph of mean and variance 
estimates (with a gamma-family local regression).

Model:
Kij follows a negative binomial (NB) distribution with 
mean sjqi0 and variance sjqi0 + sjσi².



Diagnostic plot for variance fit
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