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Database for accessing the annotations
Gene or a group at a time – not everything
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How it works?

Figure: The flow of RNA seq data processing in the xmapcore
database and the rnaSeqMap library.
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coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

MySQL >= 5.1
Xmapcore database (denormalized Ensembl)
Seq_reads table – with experiment number and genome
coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

MySQL >= 5.1
Xmapcore database (denormalized Ensembl)
Seq_reads table – with experiment number and genome
coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

MySQL >= 5.1
Xmapcore database (denormalized Ensembl)
Seq_reads table – with experiment number and genome
coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

MySQL >= 5.1
Xmapcore database (denormalized Ensembl)
Seq_reads table – with experiment number and genome
coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

MySQL >= 5.1
Xmapcore database (denormalized Ensembl)
Seq_reads table – with experiment number and genome
coordinates of each read
Indexed
Partitioned into chromosome
Average genome range query: 30s laptop, 5s fgcz-s-024

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

Databases:
xmapcore
or basic (3 tables gene,trenscript,exon) in xmapcore-like
format
maybe easily produced from non-Ensembl annotation for
rare-species

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

Databases:
xmapcore
or basic (3 tables gene,trenscript,exon) in xmapcore-like
format
maybe easily produced from non-Ensembl annotation for
rare-species

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Database back-end

Databases:
xmapcore
or basic (3 tables gene,trenscript,exon) in xmapcore-like
format
maybe easily produced from non-Ensembl annotation for
rare-species

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Stored procedures

Region reads in given sample
Gene <-> Transcript <-> Exon <-> reads

Genes on a chromosome
Intergenic regions on a chromosome

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Stored procedures

Region reads in given sample
Gene <-> Transcript <-> Exon <-> reads

Genes on a chromosome
Intergenic regions on a chromosome

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Stored procedures

Region reads in given sample
Gene <-> Transcript <-> Exon <-> reads

Genes on a chromosome
Intergenic regions on a chromosome

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Stored procedures

Region reads in given sample
Gene <-> Transcript <-> Exon <-> reads

Genes on a chromosome
Intergenic regions on a chromosome

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Classes in R

SeqReads – a collection of reads for samples in a given
genomic region
NucleotideDistribution (S3 class) – nucleotide by
nucleotide distribution of measured feature

Coverage of reads
Fold change
Splicing Index
Significant regions

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Classes in R

SeqReads – a collection of reads for samples in a given
genomic region
NucleotideDistribution (S3 class) – nucleotide by
nucleotide distribution of measured feature

Coverage of reads
Fold change
Splicing Index
Significant regions

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Classes in R

SeqReads – a collection of reads for samples in a given
genomic region
NucleotideDistribution (S3 class) – nucleotide by
nucleotide distribution of measured feature

Coverage of reads
Fold change
Splicing Index
Significant regions

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Classes in R

SeqReads – a collection of reads for samples in a given
genomic region
NucleotideDistribution (S3 class) – nucleotide by
nucleotide distribution of measured feature

Coverage of reads
Fold change
Splicing Index
Significant regions

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Classes in R

SeqReads – a collection of reads for samples in a given
genomic region
NucleotideDistribution (S3 class) – nucleotide by
nucleotide distribution of measured feature

Coverage of reads
Fold change
Splicing Index
Significant regions

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting genes

Good coverage
Good coverage of exons
Interesting splicing index
Interesting new regions – novel exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting genes

Good coverage
Good coverage of exons
Interesting splicing index
Interesting new regions – novel exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting genes

Good coverage
Good coverage of exons
Interesting splicing index
Interesting new regions – novel exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting genes

Good coverage
Good coverage of exons
Interesting splicing index
Interesting new regions – novel exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting genes

Good coverage
Good coverage of exons
Interesting splicing index
Interesting new regions – novel exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting intergenic regions

Irreducible regions with good coverage
We treat them as novel genes and run gene-style analysis
Looking for exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting intergenic regions

Irreducible regions with good coverage
We treat them as novel genes and run gene-style analysis
Looking for exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting intergenic regions

Irreducible regions with good coverage
We treat them as novel genes and run gene-style analysis
Looking for exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Interesting intergenic regions

Irreducible regions with good coverage
We treat them as novel genes and run gene-style analysis
Looking for exons

More algorithms to establish within the framework!!

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Output

Iranges objects – for interesting regions
DESeq object – gene/exon level expression - for the
significance analysis with DESeq
Lists of interesting features

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Output

Iranges objects – for interesting regions
DESeq object – gene/exon level expression - for the
significance analysis with DESeq
Lists of interesting features

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Output

Iranges objects – for interesting regions
DESeq object – gene/exon level expression - for the
significance analysis with DESeq
Lists of interesting features

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Outline

1 Motivation
State of the technology
Exonmap paradigms
Data Mining

2 Contribution
Schema of the library
Processing
Analysis pipelines

3 Summary and future developments
Numeric results
Examplary plots
Splicing index

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

An example of rnaSeqMap analysis pipeline

A. Lesniewska, M.J. Okoniewski rnaSeqMap



Motivation
Contribution

Summary and future developments

Schema of the library
Processing
Analysis pipelines

Analysis pipelines

Get all the genes from a chromosome
Check for interesting features
Check possible gene extensions – expression closely
around the gene

Get all the intergenic regions on chromosome
Find novel expressed regions
Describe the regions
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Analysis pipelines - code

test.gene<-function(g,exps,nsums,mi,ms)
{
rs <- newSeqReadsFromGene(g)
rs <- addExperimentsToReadset(rs,exps)
nd.cov <- getCoverageFromRS(rs,exps)
nd.cov <- normalizeBySum(nd.cov, nsums)
nd.reg <- findRegionsAsND(nd.cov,as.int(mi),ms=ms)
ir.reg <- findRegionsAsIR(nd.cov,as.int(mi),ms=ms)
cat("region search algorithm...\n")
out <- g
out <- c(out, apply(distribs(nd.cov),2,max))
out <- c(out, apply(distribs(nd.cov),2,mean))
out <- c(out, apply(distribs(nd.reg),2,max))

}
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Analysis pipelines - code

test.space<-function(exps,ch,st,en,str,nsums,mi,ms)
{
g.ch <- rnaSeqMap:::.chromosome.number(ch)
rs <- newSeqReads(g.ch,st,en,str)
rs <- addExperimentsToReadset(rs,exps)
nd.cov <- getCoverageFromRS(rs,exps
nd.cov <- normalizeBySum(nd.cov, nsums)
nd.reg <- findRegionsAsND(nd.cov,as.int(mi),ms=ms)
out <- c(ch,st, en, str)
out <- c(out, apply(distribs(nd.cov),2,max))
out <- c(out, apply(distribs(nd.cov),2,mean))
out <- c(out, apply(distribs(nd.reg),2,max))
}
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Analysis pipelines - code

my.genes<-geneInChromosome(22, 200000, 204000,1)
my.spaces<-spaceInChromosome(22, 200000, 204000,1)

interesting.genes <- NULL
for (i in 1:length(my.genes))
{ cat ("Running gene ", i , "----------\n")

interesting.genes <- rbind(interesting.genes,
test.gene(my.genes[i], 1:6, nsums))}

interesting.spaces <- NULL
for (i in 1:(dim(my.spaces))[1])
{ cat ("Running space ", i , "----------\n")

interesting.spaces <- rbind(interesting.spaces,
test.space(1:2, 22,my.spaces[i,1],
my.spaces[i,2],my.spaces[i,3] ))}
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Advantages of rnaSeqMap

Complex analysis of huge data on a small machine - awk,
MySQL, R do not have big requirements
Flexible and fine-grained approach to transcriptomics

Not a single nucleotide can hide, if it is expressed
Flexible boundaries of expression regions – we rely on
Ensembl, but do not have to trust it blindly
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Size and allocation of RAM memory to run big regions –
we have to run one chromosome at a time
Speed of queries for reads data – not bad now
Speed of analysis – optimized by rewriting in C
Installation is not simple – but still simpler than many other
systems
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Numeric results

In total of 38546 genes and pseudogenes, there are:
6863 genes with expression regions >10 for all 6 patients
24172 genes with expression >10 at least for one patient
14375 genes with no irreducible regions >10 in any patient
9912 genes with at least 100 reads mapped in total in 6
samples
5822 genes with no reads at all

Similar to detection on microarrays, however coverage is still
too low to detect splicing in most cases. . .
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Splicing indeks

Similar to original in Gardina et al.
Normalized to +/- 1
Calculated on each nucleotide
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Splicing index

SI(n) =


0, if (E1n = 0 ∧ E2n = 0)
1, if (E1n = 0 ∧ E2n = 0) ∨ ( E1n

G1n
· E2n

G2n
> 2)

−1, if (E1n = 0 ∧ E2n = 0) ∨ ( E1n
G1n
· E2n

G2n
< 0.5)

log2(
E1n
G1n
· E2n

G2n
) in all other cases

Where E1n and E2n are the coverage values for a given
nucleotide, while G1n and G2n are the counts of reads in the
region or gene.
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Future developments

exon/isoform discovery
paired end reads
new splicing index forms
parallel execution with snow, multicore,. . .
. . . etc
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Summary

The library rnaSeqMap in Bioconductor 2.7
...
Have fun!!!
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