Lightweight RNAseq analysis with BioConductor

A. Lesniewska^{1,2} M.J. Okoniewski²

¹Institute of Computer Science Poznan University of Technology, Poland

²Functional Genomics Center UNI ETH Zurich, Switzerland

Bioconductor Developer Meeting Europe - 17-18. 11. 2010

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

ヨト イヨト ヨヨ わえの

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

State of the technology Exonmap paradigms Data Mining

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

State of the technology RNA-seq

- The coverage of SOLID starts to be enough to run whole transcriptomes RNAseq for higher species.
- 300-900M of reads per run
- Mapping is being constantly improved

State of the technology Exonmap paradigms Data Mining

<ロ> <同> <同> < 三> < 三> < 三> 三日 のQ()

State of the technology RNA-seq

- The coverage of SOLID starts to be enough to run whole transcriptomes RNAseq for higher species.
- 300-900M of reads per run
- Mapping is being constantly improved

State of the technology Exonmap paradigms Data Mining

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

State of the technology

- The coverage of SOLID starts to be enough to run whole transcriptomes RNAseq for higher species.
- 300-900M of reads per run
- Mapping is being constantly improved

State of the technology Exonmap paradigms Data Mining

Our assumptions

• We can use database storage

- Recent improvements in DB engines allow fast access: indexing, partitioning
- R as the analysis environment good statistics, comparison to microarrays
- BioConductor library as the way of publishing the analytical API

State of the technology Exonmap paradigms Data Mining

Our assumptions

- We can use database storage
- Recent improvements in DB engines allow fast access: indexing, partitioning
- R as the analysis environment good statistics, comparison to microarrays
- BioConductor library as the way of publishing the analytical API

State of the technology Exonmap paradigms Data Mining

Our assumptions

- We can use database storage
- Recent improvements in DB engines allow fast access: indexing, partitioning
- R as the analysis environment good statistics, comparison to microarrays
- BioConductor library as the way of publishing the analytical API

State of the technology Exonmap paradigms Data Mining

Our assumptions

- We can use database storage
- Recent improvements in DB engines allow fast access: indexing, partitioning
- R as the analysis environment good statistics, comparison to microarrays
- BioConductor library as the way of publishing the analytical API

State of the technology Exonmap paradigms Data Mining

Our assumptions

- We can use database storage
- Recent improvements in DB engines allow fast access: indexing, partitioning
- R as the analysis environment good statistics, comparison to microarrays
- BioConductor library as the way of publishing the analytical API

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Exonmap paradigms

Database for accessing the annotations

- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots

State of the technology Exonmap paradigms Data Mining

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots
- It worked => Let's do the same for RNAseq...

State of the technology Exonmap paradigms Data Mining

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Exonmap paradigms

- Database for accessing the annotations
- Gene or a group at a time not everything
- Translation of genes<->transcripts<->exons
- Filtering of interesting genes and exons
- Splicing analyses and plots
- It worked => Let's do the same for RNAseq...

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

Contribution

- Schema of the library
- Processing
- Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

State of the technology Exonmap paradigms Data Mining

Lindell&Aumann window algorithm

Figure: algorithm & implementation B + (E) + E) = OQC

A. Lesniewska, M.J. Okoniewski

rnaSegMap

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lindell&Aumann window algorithm

Linear complexity

- Finds irreducible regions
- Applicable directly to coverage on genome data
- Follows biological intuitions
- Biological interpretation of consistent "exonic" region

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lindell&Aumann window algorithm

Linear complexity

Finds irreducible regions

- Applicable directly to coverage on genome data
- Follows biological intuitions
- Biological interpretation of consistent "exonic" region

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lindell&Aumann window algorithm

- Linear complexity
- Finds irreducible regions
- Applicable directly to coverage on genome data
- Follows biological intuitions
- Biological interpretation of consistent "exonic" region

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lindell&Aumann window algorithm

- Linear complexity
- Finds irreducible regions
- Applicable directly to coverage on genome data
- Follows biological intuitions
- Biological interpretation of consistent "exonic" region

State of the technology Exonmap paradigms Data Mining

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Lindell&Aumann window algorithm

- Linear complexity
- Finds irreducible regions
- Applicable directly to coverage on genome data
- Follows biological intuitions
- Biological interpretation of consistent "exonic" region

State of the technology Exonmap paradigms Data Mining

Irreducible region

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining
- Contribution
 - Schema of the library
 - Processing
 - Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Schema of the library Processing Analysis pipelines

How it works?

Figure: The flow of RNA seq data processing in the xmapcore database and the rnaSeqMap library.

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Data cleaning and preparation

Libraries prepared and sequenced

- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables
- Import into MySQL

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- Libraries prepared and sequenced
- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables
- Import into MySQL

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- Libraries prepared and sequenced
- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables
- Import into MySQL

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- Libraries prepared and sequenced
- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables
- Import into MySQL

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Data cleaning and preparation

- Libraries prepared and sequenced
- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables

Import into MySQL

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- Libraries prepared and sequenced
- Raw data files transferred
- Colorspace reads mapped
- Samtools
- AWK script to get the simple, but biiiiig tables
- Import into MySQL
Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Database back-end

MySQL >= 5.1

- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- MySQL >= 5.1
- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- MySQL >= 5.1
- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- MySQL >= 5.1
- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

- MySQL >= 5.1
- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- MySQL >= 5.1
- Xmapcore database (denormalized Ensembl)
- Seq_reads table with experiment number and genome coordinates of each read
- Indexed
- Partitioned into chromosome
- Average genome range query: 30s laptop, 5s fgcz-s-024

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Database back-end

Databases:

xmapcore

- or basic (3 tables gene,trenscript,exon) in xmapcore-like format
- maybe easily produced from non-Ensembl annotation for rare-species

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Database back-end

Databases:

- xmapcore
- or basic (3 tables gene, trenscript, exon) in xmapcore-like format
- maybe easily produced from non-Ensembl annotation for rare-species

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Database back-end

Databases:

- xmapcore
- or basic (3 tables gene, trenscript, exon) in xmapcore-like format
- maybe easily produced from non-Ensembl annotation for rare-species

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Stored procedures

• Region reads in given sample

- Gene <-> Transcript <-> Exon <-> reads
- Genes on a chromosome
- Intergenic regions on a chromosome

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Stored procedures

• Region reads in given sample

- Gene <-> Transcript <-> Exon <-> reads
- Genes on a chromosome
- Intergenic regions on a chromosome

Schema of the library Processing Analysis pipelines

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Stored procedures

- Region reads in given sample
- Gene <-> Transcript <-> Exon <-> reads
- Genes on a chromosome
- Intergenic regions on a chromosome

Schema of the library Processing Analysis pipelines

< □ > < 同 > < 三 > < 三 > 三日 > の へ ○

Stored procedures

- Region reads in given sample
- Gene <-> Transcript <-> Exon <-> reads
- Genes on a chromosome
- Intergenic regions on a chromosome

Schema of the library Processing Analysis pipelines

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Classes in R

- SeqReads a collection of reads for samples in a given genomic region
- NucleotideDistribution (S3 class) nucleotide by nucleotide distribution of measured feature
 - Coverage of reads
 - Fold change
 - Splicing Index
 - Significant regions

Classes in R

 SeqReads – a collection of reads for samples in a given genomic region

Processing

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

- NucleotideDistribution (S3 class) nucleotide by nucleotide distribution of measured feature
 - Coverage of reads
 - Fold change
 - Splicing Index
 - Significant regions

Classes in R

 SeqReads – a collection of reads for samples in a given genomic region

Processing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- NucleotideDistribution (S3 class) nucleotide by nucleotide distribution of measured feature
 - Coverage of reads
 - Fold change
 - Splicing Index
 - Significant regions

Classes in R

 SeqReads – a collection of reads for samples in a given genomic region

Processing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- NucleotideDistribution (S3 class) nucleotide by nucleotide distribution of measured feature
 - Coverage of reads
 - Fold change
 - Splicing Index
 - Significant regions

Classes in R

 SeqReads – a collection of reads for samples in a given genomic region

Processing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- NucleotideDistribution (S3 class) nucleotide by nucleotide distribution of measured feature
 - Coverage of reads
 - Fold change
 - Splicing Index
 - Significant regions

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Interesting genes

Good coverage

- Good coverage of exons
- Interesting splicing index
- Interesting new regions novel exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Interesting genes

- Good coverage
- Good coverage of exons
- Interesting splicing index
- Interesting new regions novel exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Interesting genes

- Good coverage
- Good coverage of exons
- Interesting splicing index
- Interesting new regions novel exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Interesting genes

- Good coverage
- Good coverage of exons
- Interesting splicing index
- Interesting new regions novel exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Interesting genes

- Good coverage
- Good coverage of exons
- Interesting splicing index
- Interesting new regions novel exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Interesting intergenic regions

Irreducible regions with good coverage

- We treat them as novel genes and run gene-style analysis
- Looking for exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Interesting intergenic regions

- Irreducible regions with good coverage
- We treat them as novel genes and run gene-style analysis
- Looking for exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Interesting intergenic regions

- Irreducible regions with good coverage
- We treat them as novel genes and run gene-style analysis
- Looking for exons

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Interesting intergenic regions

- Irreducible regions with good coverage
- We treat them as novel genes and run gene-style analysis
- Looking for exons

Schema of the library Processing Analysis pipelines

Output

• Iranges objects - for interesting regions

DESeq object – gene/exon level expression - for the significance analysis with DESeq

• Lists of interesting features

Schema of the library Processing Analysis pipelines

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Output

- Iranges objects for interesting regions
- DESeq object gene/exon level expression for the significance analysis with DESeq
- Lists of interesting features

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Output

- Iranges objects for interesting regions
- DESeq object gene/exon level expression for the significance analysis with DESeq
- Lists of interesting features

Motivation Sche Contribution Proce Summary and future developments Analy

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

Contribution

- Schema of the library
- Processing
- Analysis pipelines

3 Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Schema of the library Processing Analysis pipelines

An example of rnaSeqMap analysis pipeline

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

• Get all the genes from a chromosome

- Check for interesting features
- Check possible gene extensions expression closely around the gene

• Get all the intergenic regions on chromosome

- Find novel expressed regions
- Describe the regions

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

• Get all the genes from a chromosome

- Check for interesting features
- Check possible gene extensions expression closely around the gene

• Get all the intergenic regions on chromosome

- Find novel expressed regions
- Describe the regions

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

- Get all the genes from a chromosome
 - Check for interesting features
 - Check possible gene extensions expression closely around the gene
- Get all the intergenic regions on chromosome
 - Find novel expressed regions
 - Describe the regions

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

- Get all the genes from a chromosome
 - Check for interesting features
 - Check possible gene extensions expression closely around the gene

• Get all the intergenic regions on chromosome

- Find novel expressed regions
- Describe the regions
Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

- Get all the genes from a chromosome
 - Check for interesting features
 - Check possible gene extensions expression closely around the gene
- Get all the intergenic regions on chromosome
 - Find novel expressed regions
 - Describe the regions

Schema of the library Processing Analysis pipelines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Analysis pipelines

- Get all the genes from a chromosome
 - Check for interesting features
 - Check possible gene extensions expression closely around the gene
- Get all the intergenic regions on chromosome
 - Find novel expressed regions
 - Describe the regions

Schema of the library Processing Analysis pipelines

Analysis pipelines - code

```
test.gene<-function(g,exps,nsums,mi,ms)</pre>
 rs <- newSeqReadsFromGene(q)</pre>
 rs <- addExperimentsToReadset(rs,exps)</pre>
 nd.cov <- getCoverageFromRS(rs,exps)</pre>
 nd.cov <- normalizeBySum(nd.cov, nsums)</pre>
 nd.reg <- findRegionsAsND(nd.cov,as.int(mi),ms=ms)</pre>
 ir.reg <- findRegionsAsIR(nd.cov,as.int(mi),ms=ms)</pre>
 cat ("region search algorithm...\n")
 out <- q
 out <- c(out, apply(distribs(nd.cov),2,max))</pre>
 out <- c(out, apply(distribs(nd.cov),2,mean))</pre>
 out <- c(out, apply(distribs(nd.reg),2,max))</pre>
```

Schema of the library Processing Analysis pipelines

Analysis pipelines - code

```
test.space<-function(exps,ch,st,en,str,nsums,mi,ms)</pre>
{
g.ch <- rnaSeqMap:::.chromosome.number(ch)</pre>
rs <- newSeqReads(g.ch,st,en,str)</pre>
rs <- addExperimentsToReadset(rs,exps)</pre>
nd.cov <- getCoverageFromRS(rs,exps</pre>
nd.cov <- normalizeBySum(nd.cov, nsums)</pre>
nd.reg <- findRegionsAsND(nd.cov,as.int(mi),ms=ms)</pre>
out <- c(ch,st, en, str)</pre>
out <- c(out, apply(distribs(nd.cov),2,max))</pre>
out <- c(out, apply(distribs(nd.cov),2,mean))</pre>
out <- c(out, apply(distribs(nd.reg),2,max))</pre>
}
```

<ロ> <同> <同> < 三> < 三> < 三> 三日 のQ()

Schema of the library Processing Analysis pipelines

Analysis pipelines - code

my.genes<-geneInChromosome(22, 200000, 204000,1)</pre> my.spaces<-spaceInChromosome(22, 200000, 204000,1) interesting.genes <- NULL for (i in 1:length(my.genes)) cat ("Running gene ", i , "-----\n") { interesting.genes <- rbind(interesting.genes, test.gene(my.genes[i], 1:6, nsums))} interesting.spaces <- NULL for (i in 1:(dim(my.spaces))[1]) cat ("Running space ", i , "-----\n") ł interesting.spaces <- rbind(interesting.spaces, test.space(1:2, 22,my.spaces[i,1], my.spaces[i,2],my.spaces[i,3]))}

Schema of the library Processing Analysis pipelines

Advantages of rnaSeqMap

- Complex analysis of huge data on a small machine awk, MySQL, R do not have big requirements
- Flexible and fine-grained approach to transcriptomics
 - Not a single nucleotide can hide, if it is expressed
 - Flexible boundaries of expression regions we rely on Ensembl, but do not have to trust it blindly

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Schema of the library Processing Analysis pipelines

Advantages of rnaSeqMap

- Complex analysis of huge data on a small machine awk, MySQL, R do not have big requirements
- Flexible and fine-grained approach to transcriptomics
 - Not a single nucleotide can hide, if it is expressed
 - Flexible boundaries of expression regions we rely on Ensembl, but do not have to trust it blindly

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Schema of the library Processing Analysis pipelines

Advantages of rnaSeqMap

- Complex analysis of huge data on a small machine awk, MySQL, R do not have big requirements
- Flexible and fine-grained approach to transcriptomics
 - Not a single nucleotide can hide, if it is expressed
 - Flexible boundaries of expression regions we rely on Ensembl, but do not have to trust it blindly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Contribution Processing evelopments Analysis pipelines

Challenges

- Size and allocation of RAM memory to run big regions we have to run one chromosome at a time
- Speed of queries for reads data not bad now
- Speed of analysis optimized by rewriting in C
- Installation is not simple but still simpler than many other systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Schema of the library Processing Analysis pipelines

Challenges

- Size and allocation of RAM memory to run big regions we have to run one chromosome at a time
- Speed of queries for reads data not bad now
- Speed of analysis optimized by rewriting in C
- Installation is not simple but still simpler than many other systems

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト 三日 のへの

Schema of the library Processing Analysis pipelines

Challenges

- Size and allocation of RAM memory to run big regions we have to run one chromosome at a time
- Speed of queries for reads data not bad now
- Speed of analysis optimized by rewriting in C
- Installation is not simple but still simpler than many other systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Schema of the library Processing Analysis pipelines

Challenges

- Size and allocation of RAM memory to run big regions we have to run one chromosome at a time
- Speed of queries for reads data not bad now
- Speed of analysis optimized by rewriting in C
- Installation is not simple but still simpler than many other systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Numeric results Examplary plots Splicing index

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Numeric results Examplary plots Splicing index

Numeric results

• In total of 38546 genes and pseudogenes, there are:

- 6863 genes with expression regions >10 for all 6 patients
- 24172 genes with expression >10 at least for one patient
- 14375 genes with no irreducible regions >10 in any patient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- 9912 genes with at least 100 reads mapped in total in 6 samples
- 5822 genes with no reads at all

Numeric results Examplary plots Splicing index

Numeric results

• In total of 38546 genes and pseudogenes, there are:

- 6863 genes with expression regions >10 for all 6 patients
- 24172 genes with expression >10 at least for one patient
- 14375 genes with no irreducible regions >10 in any patient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- 9912 genes with at least 100 reads mapped in total in 6 samples
- 5822 genes with no reads at all

Numeric results Examplary plots Splicing index

Numeric results

- In total of 38546 genes and pseudogenes, there are:
 - 6863 genes with expression regions >10 for all 6 patients
 - 24172 genes with expression >10 at least for one patient
 - 14375 genes with no irreducible regions >10 in any patient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- 9912 genes with at least 100 reads mapped in total in 6 samples
- 5822 genes with no reads at all

Numeric results Examplary plots Splicing index

Numeric results

- In total of 38546 genes and pseudogenes, there are:
 - 6863 genes with expression regions >10 for all 6 patients
 - 24172 genes with expression >10 at least for one patient
 - 14375 genes with no irreducible regions >10 in any patient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- 9912 genes with at least 100 reads mapped in total in 6 samples
- 5822 genes with no reads at all

Numeric results Examplary plots Splicing index

Numeric results

- In total of 38546 genes and pseudogenes, there are:
 - 6863 genes with expression regions >10 for all 6 patients
 - 24172 genes with expression >10 at least for one patient
 - 14375 genes with no irreducible regions >10 in any patient

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- 9912 genes with at least 100 reads mapped in total in 6 samples
- 5822 genes with no reads at all

Numeric results Examplary plots Splicing index

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Numeric results Examplary plots Splicing index

Irreducible regions of coverage

くちゃくほそくほそくほそく 日本 ろんの

Numeric results Examplary plots Splicing index

Examplary plot

rnaSeqMap

Numeric results Examplary plots Splicing index

Examplary plot

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Numeric results Examplary plots Splicing index

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Outline

Motivation

- State of the technology
- Exonmap paradigms
- Data Mining

2 Contribution

- Schema of the library
- Processing
- Analysis pipelines

Summary and future developments

- Numeric results
- Examplary plots
- Splicing index

Numeric results Examplary plots Splicing index

Splicing indeks

• Similar to original in Gardina et al.

- Normalized to +/- 1
- Calculated on each nucleotide

Numeric results Examplary plots Splicing index

Splicing indeks

• Similar to original in Gardina et al.

- Normalized to +/- 1
- Calculated on each nucleotide

Numeric results Examplary plots Splicing index

Splicing indeks

- Similar to original in Gardina et al.
- Normalized to +/- 1
- Calculated on each nucleotide

Numeric results Examplary plots Splicing index

Splicing index

$$SI(n) = \begin{cases} 0, if \quad (E_{1n} = 0 \land E_{2n} = 0) \\ 1, if \quad (E_{1n} = 0 \land E_{2n} = 0) \quad \lor \left(\frac{E_{1n}}{G_{1n}} \cdot \frac{E_{2n}}{G_{2n}} > 2\right) \\ -1, if \quad (E_{1n} = 0 \land E_{2n} = 0) \quad \lor \left(\frac{E_{1n}}{G_{1n}} \cdot \frac{E_{2n}}{G_{2n}} < 0.5\right) \\ log_{2}\left(\frac{E_{1n}}{G_{1n}} \cdot \frac{E_{2n}}{G_{2n}}\right) & \text{ in all other cases} \end{cases}$$

<ロ> <同> <同> < 三> < 三> < 三> 三日 のQ()

Where E_{1n} and E_{2n} are the coverage values for a given nucleotide, while G_{1n} and G_{2n} are the counts of reads in the region or gene.

Numeric results Examplary plots Splicing index

Splicing index

A. Lesniewska, M.J. Okoniewski rnaS

rnaSeqMap

Numeric results Examplary plots Splicing index

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Future developments

- exon/isoform discovery
- paired end reads
- new splicing index forms
- parallel execution with snow, multicore,...
- ...etc

Numeric results Examplary plots Splicing index

Summary

• The library rnaSeqMap in Bioconductor 2.7

- o ...
- Have fun!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For Further Reading I

- Aumann Y. Lindell Y:
- J. Intell. Inf. Syst. 2003, 20(3):255-283.
- Gardina et al.: BMC Genomics 2006, 7:325.
- Yates T, Okoniewski MJ, Miller CJ Nucleic Acids Research 2008, 36(suppl 1):D780–D786.
- Okoniewski M, Yates T, Dibben S, Miller C Genome Biology 2007, 8(5):R79.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Acknowledgements

• Functional Genomic Center Zurich:

Marzanna Künzli-Gontarczyk Sirisha Aluri Weihong Qi Hubert Rehrauer Tanguy Le Carrour Remy Bruggmann Hansruedi Baetschmann

• Kinderspital Zürich:

Beat Scheaffer Marco Wachtel

- Institute of Molecular Systems Biology, ETH: Lucia Bautista Borrego
- PICR Manchester:

Tim Yates