
Working with DNA strings and ranges: Exercises

Hervé Pagès∗

9-10 December, 2010

Contents

1 Use case I: Extracting sequences from a reference genome 1

2 Use case II: Importing and manipulating a GappedAlignments
object 3

3 Use case III: Reads that don’t hit a (known) gene 4

4 Use case IV: Measuring the complexity of the reads 5

5 Use case V: Pattern matching 7

6 Session information 7

1 Use case I: Extracting sequences from a refer-
ence genome

In this introductory use case, we learn how to extract DNA sequences from a
BSgenome data package for a set of given locations. In particular we use the
transcript, exon and CDS locations stored in a TranscriptDb object to extract
the sequences of those features.

The Bioconductor data repositories provide a BSgenome data package for
the sacCer2 genome (Yeast): the BSgenome.Scerevisiae.UCSC.sacCer2 package.
You should normally have it installed. It contains the full DNA sequences of
the sacCer2 genome.

Also the SeattleIntro2010 package contains a TranscriptDb object corre-
sponding to this genome. Note that a TranscriptDb object contains positional
(and relational) information about features but it does not contain sequences.
If we need to extract the sequence of a given feature, an easy way is to query
the BSgenome.Scerevisiae.UCSC.sacCer2 package with the getSeq function.

∗Fred Hutchinson Cancer Research Center, Seattle, WA 98008

1

http://bioconductor.org/packages/release/bioc/html/BSgenome.Scerevisiae.UCSC.sacCer2.html
http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Scerevisiae.UCSC.sacCer2.html


Note that the result of this query is meaningful only if the TranscriptDb
object contains positional annotations relative to the genome stored in the
BSgenome data package. For example using a TranscriptDb object based on
BSgenome.Hsapiens.UCSC.hg18 to extract sequences from BSgenome.Hsapiens.UCSC.hg19
would not make sense.

Exercise 1
• Start R and load the SeattleIntro2010 package.

• Use system.file(package="SeattleIntro2010") to get the full path to the
top-level folder of the installed package. (The top-level folder of an in-
stalled package should always be treated as read-only).

• Use list.files on the previous result.

• The TranscriptDb object that we are looking for is in the extdata sub-
folder. Use list.files(system.file("extdata", package="SeattleIntro2010"))

to see it. It’s the sacCer2_sgdGene.sqlite file.

• The sacCer2_sgdGene.sqlite file is an SQLite database that stores the
transcript, exon and CDS locations relative to the sacCer2 genome as well
as the relations between those features and their corresponding genes. This
information was extracted from the “SGD Genes” track for sacCer2 at the
UCSC Genome Browser, and formatted into an SQLite database that can
be loaded in R with the loadFeatures function from the GenomicFeatures
package.

• Load sacCer2_sgdGene.sqlite with loadFeatures. Let’s call txdb the
returned object.

txdb is a TranscriptDb object. You will learn more about those objects in the
next session (in particular, how to make your own). For now, we’re just going to
extract all the exon locations from it and then query the BSgenome.Scerevisiae.UCSC.sacCer2
with getSeq to extract their sequences.

Exercise 2
• Extract all the exon locations from txdb with the exons function. The

result is a GRanges object.

• What’s the longest exon? Are there exons on the 2micron plasmid?

• Load the BSgenome.Scerevisiae.UCSC.sacCer2 package.

• There is only one symbol defined in this package, the Scerevisiae object
(you can check this with ls("package:BSgenome.Scerevisiae.UCSC.sacCer2")).
Display it.

• Try to load any sequence with Scerevisiae[["some sequence name"]].

• Use the getSeq function on Scerevisiae and the GRanges object created
previously to extract the exons sequences.

2

http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg18.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Scerevisiae.UCSC.sacCer2.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.Scerevisiae.UCSC.sacCer2.html


We end up with a DNAStringSet object containing our exon sequences. Later
we will learn more about DNAString and DNAStringSet objects.

2 Use case II: Importing and manipulating a
GappedAlignments object

An high-throughput sequencing experiment produces reads that need to be
aligned against a reference genome. Although the Bioconductor software pro-
vides some fast pattern matching tools that can be used for aligning the reads,
this step is typically done with a third-party software like Bowtie, BWA, Eland,
etc...

The SeattleIntro2010 package contains reads from the Nagalakshmi et al. [1]
experiment (Yeast RNA-seq). They have been aligned against the sacCer2 ref-
erence genome (using the BWA software) and stored in a BAM file. In order
to keep the package to a reasonable size, only the reads from a single lane
(oligo(dT)-primed, original) with hits on chromosome I to V have been kept.
They are in the SRR002051.chrI-V.bam file.

Bioconductor provides several tools to load a BAM file:

• The low-level scanBam function from the Rsamtools package. Returns a
list of lists.

• The middle-level readGappedAlignments function from the GenomicRanges
package. Returns a GappedAlignments object.

• The high-level readAligned function from the ShortRead package. Returns
an AlignedRead object.

Here we will focus on the middle-level solution. As we will see, GappedAlign-
ments objects don’t store as much information as AlignedRead objects (e.g. the
read sequences, read qualities and alignment scores are not stored), but, unlike
AlignedRead objects, they can store alignments with indels and gaps.

Exercise 3
• Load the SRR002051.chrI-V.bam file (located in the extdata subfolder

of the SeattleIntro2010 package) with the readGappedAlignments function
from the GenomicRanges package.

• Do the alignments have gaps?

• Use cigarOpTable to find the alignments that don’t have a simple cigar
(simple cigar means “only M’s in it”).

• Turn this object (galn) into a GRanges object (reads).

We will use this GRanges object in the next section.

3

http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html


3 Use case III: Reads that don’t hit a (known)
gene

In this section, we want to identify the reads that don’t hit a (known) gene
as well as the regions in the genomes covered by those reads. Because those
reads are coming from an RNA-seq experiment, those regions would be good
candidates for de-novo gene/transcript discovery.

Exercise 4
• Load the sacCer2_sgdGene.sqlite file (located in the extdata subfolder

of the SeattleIntro2010 package) with loadFeatures. Let’s call txdb this
TranscriptDb object.

• Use the countOverlaps function to find the elements in the reads object
(from the previous section) that don’t hit any gene. Note that there
are basically 2 approaches to this: one based on the start/end of the
transcripts and one based on the start/end of the exons. Let’s call reads0
the subset of reads made of those elements that don’t hit any gene.

• Use the reduce function to extract the regions covered by reads0.

We want to refine the way we’ve determined the above regions by using a
method based on the depth of the coverage of the reads. More precisely we want
to find the regions of the genome where the coverage of reads0 is greater than
(or equal to) some threshold (e.g. 10). An alternative way to formulate this is:
we want to find the regions of the genome corresponding to all the bases that
receive at least 10 hits.

Exercise 5
• Compute the genome wide coverage of reads0. The result is a SimpleR-
leList object. This sounds complicated but it helps to think of it as a
named list of Rle objects. The names of the list are the chromosomes
and each top-level element in the list is an Rle object representing the
coverage for the corresponding chromosome. Let’s call this SimpleRleList
object cov0.

• Use the slice function to slice cov0 horizontally.

• Use the generic function as to turn the result of the previous slicing into
a GRanges object.

There is an issue with the above method: we’ve lost the strand information.
We might want to retain it if our final goal were to identify new transcripts. In
the next exercise we improve our “pile up and slice” method to propagate the
strand information stored in reads0.

Exercise 6
• Split reads0 in two GRanges object: one containing the reads located on

the plus strand and one containing the reads located on the minus strand.

4

http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html


• Apply the “pile up and slice” method used in the previous exercise to
each GRanges object. This transforms each GRanges object into another
GRanges object.

• Note that the two GRanges objects obtained previously are unstranded.
Add the strand information to them.

• Combine the two GRanges objects obtained previously with the generic
function c.

• One last thing we might want to do is use reduce on the final result. The
only effect of reducing here is to reorder the regions first by chromosome
and then by strand (this is how reduce orders the elements of a GRanges
object).

Finally, to make it easier to repeat the transformation we’ve done to reads0

in the previous exercise but now with different values of the threshold used for
the slicing step, we want to wrap our code in a function.

Exercise 7
• Write a function (coveredRegions) that takes a set of reads (in a GRanges

object) and a threshold (lower) and returns a GRanges object containing
the regions where the coverage of the reads is greater than (or equal to)
the threshold. Make sure the returned GRanges object is stranded and
reduced.

• Sanity check: compare coveredRegions(reads0, 1) with reduce(reads0).

• Extract the DNA sequences corresponding to the regions returned by cov-

eredRegions(reads0, 10). Try with other threshold values.

4 Use case IV: Measuring the complexity of the
reads

A common task when dealing with HTS data is to filter out reads with a low
complexity like poly-As or reads made of the repetition of the same 2-mer (din-
ucleotide) etc... In this section, we implement a simple function that takes a
DNAStringSet object (the reads) and returns a score for each read based on
its complexity. The approach we use is inspired and adapted from the DUST
algorithm.

The basic idea behind DUST is that a DNA sequence with a “poor trinu-
cleotide content” (i.e. with a small number of distinct trinucleotides) is consid-
ered to have a low complexity. For example, the following sequences have a low
complexity:

• AAAAAAAAAA: contains only 1 tri-nculeotide: AAA

• ATATATATATATATA: contains 2 tri-nucleotide: ATA and TAT

5



On the other hand, a DNA sequence with a “rich trinucleotide content”
(i.e. many distinct trinucleotides) is considered to have a high complexity. For
example, the following 36-mer:

• GGGCTACATGACGGTCCTGTATTTAGCCAGAGGATC

has the highest complexity a 36-mer can have because all the trinucleotides
contained in it (34 in total) are distinct.

Here is how we will compute the score of a given DNA sequence:

• Count the number of occurences (frequency) of each possible trinucleotide:
FAAA, FAAC , FAAG, FAAT , FACA, ..., FTTT (64 in total).

• Substract 1 to the frequencies that are not zero. That is: for each Fxxx,
if Fxxx! = 0 then Fxxx = Fxxx − 1.

• score = 1−
√∑

F 2
xxx

L−3 where L is the length of the sequence.

A score of 0 indicates a poly-A, poly-C, poly-G or poly-T. A score of 1
can only be obtained by a sequence where all trinucleotides are distinct which
implies that the sequence is no more than 66 bases long. Sequences longer than
this cannot obtain a score of 1 and this scoring algorithm is not expected to give
meaningful results on long sequences. Also, the score of very short sequences
(i.e. 4 <= length <= 6) is not very meaningful either.

The SeattleIntro2010 package contains reads from the Nagalakshmi et al.
experiment stored in a FASTQ file (unaligned reads). Let’s start by loading
them.

Exercise 8
• Use the read.DNAStringSet function from the Biostrings package to load

the SRR002051.reads1-50k.fastq file located in the extdata subfolder
of the SeattleIntro2010 package. Note that, by default, read.DNAStringSet
expects a FASTA file. Consult the man page for read.DNAStringSet to see
how to read a FASTQ file.

• Use the trinucleotideFrequency function from the Biostrings package to
compute the trinucleotide frequencies of all the reads. The result (let’s
call it tnf) is a matrix containing the trinucleotide counts for each input
read. The matrix has 1 row per read and 64 columns (i.e. one column per
each possible trinucleotide).

• Compute the score of all the reads by following the steps described above.
By using the vectorization capabilities of the arithmetic operations in R,
we can avoid the use of loops for this and we can be very fast. Use rowSums

on a numeric matrix to sum all the coefficients that belong to the same
row, and this for all the rows.

• Wrap the previous code in a function i.e. implement the complexityOf-

Reads function that computes the complexity scores of each element of a
DNAStringSet object.

6

http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/SeattleIntro2010.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html


5 Use case V: Pattern matching

Exercise 9
•

6 Session information

• R version 2.12.1 beta (2010-12-07 r53813), i386-apple-darwin9.8.0

• Locale: C

• Base packages: base, datasets, grDevices, graphics, methods, stats, utils

• Other packages: ALL 1.4.7, AnnotationDbi 1.12.0, Biobase 2.10.0,
DBI 0.2-5, GO.db 2.4.5, RSQLite 0.9-4, SeattleIntro2010 0.0.33,
biomaRt 2.6.0, genefilter 1.32.0, hgu95av2.db 2.4.5, org.Hs.eg.db 2.4.6

• Loaded via a namespace (and not attached): RCurl 1.4-3, XML 3.2-0,
annotate 1.28.0, splines 2.12.1, survival 2.36-2, tools 2.12.1, xtable 1.5-6

References

[1] U. Nagalakshmi, Z. Wang, K. Waern, C. Shou, D. Raha, M. Gerstein, and
M. Snyder. The transcriptional landscape of the yeast genome defined by
RNA sequencing. Science, 320:1344–1349, Jun 2008.

7


	Use case I: Extracting sequences from a reference genome
	Use case II: Importing and manipulating a GappedAlignments object
	Use case III: Reads that don't hit a (known) gene
	Use case IV: Measuring the complexity of the reads
	Use case V: Pattern matching
	Session information

