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The basis of phenotypic variation: species
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The basis of phenotypic variation: tissues
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Epigenetics

Heritable changes in phenotype that are not caused by 
changes in DNA.
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DNA Methylation

In humans: methylation occurs at CpG dinucleotides (28.2M)

CpGs are depleted genomewide.

CpGs tend to cluster together (clusters are termed CpG Islands),
these clusters are enriched in or near promoters.

Methylation is associated with “openness” of the DNA.
Hypermethylation (high) is associated with gene silencing
Hypomethylation (low) is associated with active genes

Methylation is inherited (at least in cell division).

CG CGCGCGCG CG CG
mememe

GC GCGCGCGC GC GC
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Measuring DNA methylation

CpG islands
In eukaryotic genomes, regions 
of several hundred base pairs 
that are not depleted of  
CpGs by 5-methylcytosine 
deamination owing to them 
being unmethylated in the 
germ line. They often overlap 
transcription start sites. Most 
definitions of CpG islands set a 
minimum length (for example, 
200 or 500 bp), a minimum 
observed:expected CpG ratio 
(for example, greater than  
0.6 or 0.65) and a minimum 
GC content (for example,  
50% or 55%).

genome-scale DNA methylation analysis technologies. 
The relative merits of the different techniques are dis-
cussed, and bioinformatic challenges that are unique 
to DNA methylation analysis are outlined. Although 
some of the methods covered in this Review rely on 
species-specific arrays, most of the principles could 
be applied to any organism with 5meC, including bac-
teria and archaea. Some of the methods described in 
this Review may be applicable to 5-hydroxymethylcy-
tosine, which was recently confirmed to be present in  
mammalian cells27,28.

Distribution and detection of DNA methylation
As DNA samples are usually derived from a collection 
of cells, which may vary in their DNA methylation 
patterns, the distribution of 5meC in a DNA sample is 
complex. Measurements can be made either of the pat-
tern of methylated target sequences along individual 
DNA molecules or as an average methylation level at 
a single genomic locus across many DNA molecules29. 
Analysis of DNA methylation is further complicated by 
the uneven distribution of methylation target sequences, 
such as CpG, across the genome. As a consequence of 
the frequent mutation of 5meC to thymine, these targets 
are depleted throughout most of the genome but are 
maintained in specific regions, such as CpG islands. This 
non-uniform distribution is an important considera-
tion in DNA methylation analysis, as discussed below. 
As noted above, 5meC is not readily distinguished from 
unmethylated cytosine by hybridization-based methods 
and, as DNA methyltransferases are not present during 
PCR or in biological cloning systems, DNA methyla-
tion information is erased during amplification. Some 
investigators have suggested that it could be feasible to 
maintain the pattern of methylation during PCR if an 
appropriate DNA methyltransferase were present in the 

PCR reaction. This approach would require a thermosta-
ble DNA methyltransferase with very high efficiency 
and maintenance fidelity and a complete lack of de novo 
methyltransferase activity, and so has not been realized 
to date. Therefore, almost all sequence-specific DNA 
methylation analysis techniques rely on a methylation-
dependent treatment of the DNA before amplification 
or hybridization29–32. There are three main approaches: 
endonuclease digestion, affinity enrichment and bisul-
phite conversion. After genomic DNA has been treated 
with one of the methylation-dependent steps, various 
molecular biology techniques, including probe hybridi-
zation and sequencing, can be used to reveal the loca-
tion of the 5meC residues. The combination of different 
types of pretreatment followed by different analytical 
steps has resulted in a plethora of techniques for deter-
mining DNA methylation patterns and profiles29,32–42. In 
the following sections I discuss techniques based on the 
three main approaches, and a summary is provided in 
TABLE 1. Expression profiling of cells treated with DNA 
methyltransferase inhibitors and/or histone deacetylase 
inhibitors has also been used as a discovery tool for epi-
genetically silenced genes. However, it is prone to false-
positive and false-negative results and is not considered 
to be a reliable gauge of DNA methylation at a given 
locus, and is therefore not discussed in this Review.

Endonuclease digestion
Restriction endonucleases are such powerful tools in 
molecular biology that their biological role in restric-
tion–modification systems in bacteria and archaea is 
sometimes overlooked. Each sequence-specific restric-
tion enzyme has an accompanying DNA methyl-
transferase that protects the endogenous DNA from  
the restriction defence system by methylating bases in the 
recognition site. Some restriction enzymes are inhibited 

Table 1 | Main principles of DNA methylation analysis

Pretreatment Analytical step

Locus-specific analysis Gel-based analysis Array-based analysis NGS-based analysis

Enzyme  
digestion

HpaII-PCR Southern blot
RLGS
MS-AP-PCR
AIMS

DMH
MCAM
HELP
MethylScope
CHARM
MMASS

Methyl–seq
MCA–seq
HELP–seq
MSCC

Affinity  
enrichment

MeDIP-PCR MeDIP
mDIP
mCIP
MIRA

MeDIP–seq
MIRA–seq

Sodium  
bisulphite

MethyLight
EpiTYPER
Pyrosequencing

Sanger BS
MSP
MS-SNuPE
COBRA

BiMP
GoldenGate
Infinium

RRBS
BC–seq
BSPP
WGSBS

AIMS, amplification of inter-methylated sites; BC–seq, bisulphite conversion followed by capture and sequencing; BiMP, bisulphite 
methylation profiling; BS, bisulphite sequencing; BSPP, bisulphite padlock probes; CHARM, comprehensive high-throughput arrays 
for relative methylation; COBRA, combined bisulphite restriction analysis; DMH, differential methylation hybridization; HELP, HpaII 
tiny fragment enrichment by ligation-mediated PCR; MCA, methylated CpG island amplification; MCAM, MCA with microarray 
hybridization; MeDIP, mDIP and mCIP, methylated DNA immunoprecipitation; MIRA, methylated CpG island recovery assay; 
MMASS, microarray-based methylation assessment of single samples; MS-AP-PCR, methylation-sensitive arbitrarily primed PCR; 
MSCC, methylation-sensitive cut counting; MSP, methylation-specific PCR; MS-SNuPE, methylation-sensitive single nucleotide 
primer extension; NGS, next-generation sequencing; RLGS, restriction landmark genome scanning; RRBS, reduced representation 
bisulphite sequencing; –seq, followed by sequencing; WGSBS, whole-genome shotgun bisulphite sequencing.
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PCR does not preserve methylation information.
Hybridization is not affected by methylation.

Illumina methylation arrays:
GoldenGate (early 2007, 1.5k CpGs), “27k” (late 2007), “450k” (2011)

Laird, Nature Reviews Genetics (2010)
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Bisul!te treatment
The gold standard for measuring DNA methylation at single 
CpGs is bisul"te treatment followed by Sanger or Pyro 
sequencing

Bisul"te treatment converts unmethylated Cs to Us (= T)

Can be used genome-wide, but requires the same sequencing 
effort as whole genome DNA sequencing (= expensive).

CG CGCGCGCG CG CG
mememe

TG TGCGCGCG TG TG

Bisul"te treatment
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Cancer and DNA methylation
DNA methylation in cancer was the "rst epigenetic modi"cation 
discovered in cancer (~25 years ago).

Focus (at least lately) in the literature have been on
   hyper methylation of CpG islands in promoters (tumor supprs)
   hypo methylation of select repeat elements

although
   global hypomethylation
   hypo methylation of selected genes (typically oncogenes)

have also been described.

Methylation terminology
  Hyper: goes up,        Hypo: goes down
  DMR: differentially methylated region
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CpG Islands shores

RESULTS
Most tissue-specific DNAm occurs in ‘CpG island shores’
Because CHARM is not biased for CpG island or promoter sequences,
we could obtain objective data on tissue-specific methylation. We
identified 16,379 tissue differential methylation regions (T-DMRs),
defined as regions with M values for one tissue consistently different
than that for the others at a false discovery rate (FDR) of 5% (see
Methods). The median size of a T-DMR was 255 bp. Previous studies
of tissue- or cancer-specific DNAm have focused on promoters and/or
CpG islands, which have been defined as regions with a GC fraction
greater than 0.5 and an observed-to-expected ratio of CpG greater
than 0.6 (refs. 2,5). It has previously been reported that the degree of
differences in DNAm of promoters in somatic cells is relatively low in
conventionally defined CpG islands and higher at promoters with
intermediate CpG density6,7. Two recent studies identified a relatively
small fraction, 4–8%, of CpG islands with tissue-specific methyla-
tion8,9. We also found that DNAm variation is uncommon in CpG
islands (Supplementary Fig. 1 online).
The genome-wide approach of CHARM also enabled us to find an

unexpected physical relationship between CpG islands and DNAm
variation, namely that 76% of T-DMRs were located within 2 kb of
islands in regions we now denote as ‘CpG island shores’. For example,
for the T-DMR in the PRTFDC1 gene, which encodes a brain-specific
phosphoribosyltransferase that is relatively hypomethylated in the
brain, the spreading of M values among the tissues begins B200 bp
from the CpG island and at a point where the CpG density associated
with the island has fallen to 1/10 the density in the island itself
(Fig. 1). The association of T-DMRs with CpG island shores is not due
to an arbitrary definition of CpG islands but to a true association of
these DNAm differences near but not in the regions of dense CpG
content (Supplementary Data 1 online describes all T-DMR regions,
and plots similar to those in Fig. 1 for the complete set of T-DMRs,
ordered by statistical significance, are available online; see URLs
section in Methods). The distribution of T-DMRs by distance from
the respective islands shows that DNAm variation is distributed over a
B2 kb shore, and that although CpG islands are enriched on the
arrays, because of their high CpG content (33% of CHARM probes are
in islands), only 6% of T-DMRs are in islands, compared to 76% in
shores; an additional 18% of T-DMRs were located greater than 2 kb
from the respective islands (Fig. 2). The localization of T-DMRs also

occurred largely outside of promoters (96%), as CpG islands are
localized primarily within promoters10. Furthermore, more than half
(52%) of T-DMRs were greater than 2 kb from the nearest annotated
gene. The distribution of the distance to islands remained essentially
unchanged when we used FDR cutoffs of 0.01, 0.05 and 0.10 (data
not shown).
We confirmed the array-based result that the differential methyla-

tion was in CpG island shores rather than in the associated islands by
carrying out bisulfite pyrosequencing analysis on over 100 CpG sites
in the islands and shores associated with four genes, three T-DMRs
and one cancer differential methylation region. At all 101 sites, the
DMR was confirmed to lie within the shore rather than the island
(Supplementary Table 1 online). For example, PCDH9, which
encodes a brain-specific protocadherin, was relatively hypomethylated
in the brain at all 6 sites examined in the CpG island shore but
unmethylated in both brain and spleen at all 18 sites examined in the
associated island (Supplementary Table 1). Differential methylation
of an additional four CpG island shores was also confirmed by
bisulfite pyrosequencing of 39 total CpG sites, and all showed
statistically significant differences in DNAm (P o 0.05) (Supplemen-
tary Table 2 online). These data verify the sensitivity of CHARM for
detecting subtle differences in DNAm. Furthermore, they confirm that
most normal differential methylation takes place at CpG island shores.

Similar CpG island shore hypo- and hypermethylation in cancer
We used the same comprehensive genome-wide approach to address
cancer-specific DNA methylation. We focused on colorectal cancer, a
paradigm for cancer epigenetics because of the availability of subject-
matched normal mucosa, the cell type from which the tumors arise.
We analyzed DNAm on 13 colon cancers and matched normal mucosa
from the same individuals, identifying 2,707 regions showing differ-
ential methylation in cancers (C-DMRs) with an FDR of 5% (Sup-
plementary Data 2 online, and plots similar to those in Fig. 1 for the
complete set of C-DMRs, ordered by statistical significance, are
available online; see URLs section in Methods). These C-DMRs
were similarly divided between those showing hypomethylation in
the cancer (compared to the normal colon) and those showing
hypermethylation (1,199 (44%) and 1,508 (56%), respectively). The
CHARM arrays, like other tiling arrays, do not contain repetitive
sequences, so the abundance of hypomethylation is not due to

Figure 1 Most tissue-specific differential DNA
methylation is located at CpG island shores.
(a) An example of a T-DMR located at a CpG
island shore in the PRTFDC1 gene. The upper
panel is a plot of M value versus genomic
location for brain (gray), liver (pink) and spleen
(purple). Each point represents the methylation
level of an individual sample for a given probe.
The curve represents averaged smoothed M
values, described in detail in the Methods.
Because of the scale and standardization used,
M values that range from !0.5 to 0.5 represent
unmethylated sites as defined by the control
probes, and values from 0.5 to 1.5 represent
baseline levels of methylation. The middle panel
provides the location of CpG dinucleotides with
black tick marks on the x axis. CpG density was calculated across the region using a standard density estimator and is represented by the smoothed black
line. The location of the CpG island is denoted on the x axis as an orange line. The lower panel provides gene annotation for the genomic region. The thin
outer gray line represents the transcript, the thin inner lines represent a coding region. Filled in gray boxes represent exons. On the y axis, plus and minus
marks denote sense and antisense gene transcription, respectively. (b) An example of a C-DMR that is located in a CpG island shore and that overlaps a
T-DMR. Liver (pink) is hypomethylated relative to brain (gray) and spleen (purple) tissues. Hypomethylation of colon tumor (orange) is observed in
comparison to matched normal colon tissue (green) and overlaps the region of liver hypomethylation.
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Many changes are not in CpG islands, but in regions bordering 
CpG islands; termed CpG Island shores.
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Cancer is generally viewed as over 200 separate diseases of abnormal 
cell growth controlled by a series of mutations but also involving epi-
genetic non-sequence changes in the same genes1. DNA methylation 
at CpG dinucleotides has been studied extensively in cancer, with 
hypomethylation or hypermethylation reported at some genes, and 
global hypomethylation has been ascribed to normally methylated 
repetitive DNA elements. Until now, cancer epigenetics has focused 
on high-density CpG islands, gene promoters or dispersed repeti-
tive elements2,3.

Here we took a different and more general approach to cancer epi-
genetics. This approach is based on our recent observation of frequent 
methylation alterations in colon cancer of regions of lower CpG den-
sity near islands, termed shores, as well as the observation that these 
 cancer-specific differentially methylated regions, or cDMRs, correspond 
largely to the same regions that show DNA methylation variation among 
normal spleen, liver and brain, or tissue-specific DMRs (tDMRs)4. 
Furthermore, cDMRs are highly enriched among regions differentially 
methylated during stem cell reprogramming of induced pluripotent 
stem (iPS) cells5. We thus reasoned that the very same sites might be 
generalized cDMRs, as they are involved in normal tissue differentiation 
but show aberrant methylation in at least one cancer type (colon).

We tested this hypothesis by designing a semiquantitative custom 
Illumina array for methylation analysis of 151 cDMRs consistently 

altered across colon cancer and analyzed these sites in 290 samples, 
including matched normal and cancer samples from colon, breast, 
lung, thyroid and Wilms’ tumor. We were surprised to discover that 
almost all of these cDMRs were altered across all cancers tested. 
Specifically, the cDMRs showed increased stochastic variation in 
methylation level within each tumor type, suggesting a generalized 
disruption of the integrity of the cancer epigenome. To investigate 
this idea further, we performed genome-scale bisulfite sequencing 
of three colorectal cancers, the matched normal colonic mucosa and 
two adenomatous polyps. These experiments revealed a notable loss 
of methylation stability in colon cancer, which involved CpG islands 
and shores, and large (up to several Mb) blocks of hypomethylation 
affecting more than half of the genome, with associated stochastic 
variability in gene expression, which we suggest could provide an 
epigenetic mechanism for tumor heterogeneity.

RESULTS
Stochastic variation in DNA methylation across cancer types
We sought to increase the precision of DNA methylation mea-
surements over our previous tiling array-based approach, termed 
CHARM6, analyzing 151 colon cDMRs4. We designed a custom 
nucleotide-specific Illumina bead array of 384 probes covering 139 
regions7. We studied 290 samples, including cancers from colon, lung, 

Increased methylation variation in epigenetic domains 
across cancer types
Kasper Daniel Hansen1,2,10, Winston Timp2–4,10, Héctor Corrada Bravo2,5,10, Sarven Sabunciyan2,6,10,  
Benjamin Langmead1,2,10, Oliver G McDonald2,7, Bo Wen2,3, Hao Wu8, Yun Liu2,3, Dinh Diep9, Eirikur Briem2,3, 
Kun Zhang9, Rafael A Irizarry1,2 & Andrew P Feinberg2,3

Tumor heterogeneity is a major barrier to effective cancer diagnosis and treatment. We recently identified cancer-specific 
differentially DNA-methylated regions (cDMRs) in colon cancer, which also distinguish normal tissue types from each other, 
suggesting that these cDMRs might be generalized across cancer types. Here we show stochastic methylation variation of the 
same cDMRs, distinguishing cancer from normal tissue, in colon, lung, breast, thyroid and Wilms’ tumors, with intermediate 
variation in adenomas. Whole-genome bisulfite sequencing shows these variable cDMRs are related to loss of sharply delimited 
methylation boundaries at CpG islands. Furthermore, we find hypomethylation of discrete blocks encompassing half the genome, 
with extreme gene expression variability. Genes associated with the cDMRs and large blocks are involved in mitosis and matrix 
remodeling, respectively. We suggest a model for cancer involving loss of epigenetic stability of well-defined genomic domains 
that underlies increased methylation variability in cancer that may contribute to tumor heterogeneity.
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Increased methylation variation across all cancers
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Design
3 colon cancers and their matched normal mucosa

2 adenomas

ABI SOLiD, 50bp reads

~5x coverage on CpGs

We traded coverage for biological replicates.
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Mapping
Bisul"te conversion makes the genome into an (appr) 3 letter 
alphabet, making mapping hard.

We could not use existing tricks for unbiased alignment of 
bisul"te sequencing data: we wrote a custom aligner, Merman. 

We can map ~20M CpGs uniquely.

CG
M
U
M
U
M
U
U
U

Genome

Coverage (for this CpG): 8
3 M’s and 5 U’s (Unmethylated)
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Global levels of methylation
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One sample, small region ~ 14kb

Smoothing using a binomial model (local likelihood)
Adaptive bandwidth (        important)
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Small region
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Boundary Shifts (inwards and outwards)
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Novel hypomethylation
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Capture bisul!te

~40,000 capture regions, ~400,000 CpGs
Red: Average of cancers
Blue: Average of normals
Green: Difference between cancers and normals
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Capture bisul!te

~40,000 capture regions, ~400,000 CpGs
Red: Average of cancers
Blue: Average of normals
Green: Difference between cancers and normals
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More capture
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Large blocks of hypomethylation
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What predicts hypomethylation in blocks?
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Blocks are enriched for hyper-variables genes
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Quality control: M-bias WGBS
 

 

 
 
Supplementary Figure 22: SOLiD 3+ Read position bias in evidence for methylation. The horizontal axis represents 
an offset into the nucleotide alignment from the 5’ end.  The vertical axis represents the fraction of filtered CpG 
methylation evidence from that offset that indicates that methylation is present.  Only reads aligning uniquely to the 
GRCh37 human genome assembly are considered.  In a perfect assay, the fraction should be independent of alignment 
offset and each line should be flat and horizontal.  In practice, the lines are not flat due to sequencing error and other 
noise arising from sample preparation and alignment. 
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Quality control: M-bias Capture
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Based on this, we trim 15bp.
This improves the concordance
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Conclusions
• Large blocks of hypomethylation in cancer

Global hypomethylation, expression variability
LOCKs/LADs

• Structural changes (boundaries) in small regions
Uni"ed framework for shore/islands hypo/hyper methylation

• With our smoothing technique, 4-5x is good enough
Veri"ed by high coverage padlock bs capture

• biological replicates are very useful

• Quality assessment (M-bias plots)
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Advantages of biological replicates
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The effect of copy number variation (CNV)
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