Differential expression for RNA-Seq

Wolfgang Huber

Genome Biology Unit, EMBL Heidelberg and European Bioinformatics Institute Cambridge, UK

RNA-Seq

Two applications of RNA-Seq

- Discovery
 - find new transcripts
 - find transcript boundaries
 - find splice junctions
- Comparison

Given samples from different experimental conditions, find effects of the treatment on

- gene expression strengths
- isoform abundance ratios, splice patterns, transcript boundaries

Alignment

Should one align against the genome or the transcriptome?

against transcriptome

• easier, because no gapped alignment necessary

but:

• risk to miss possible alignments!

Count data in HTS

- RNA-Seq
- Tag-Seq

Gene	GliNS1	G144	G166	G179	CB541	CB660
13CDNA73	4	0	6	1	0	5
A2BP1	19	18	20	7	1	8
A2M	2724	2209	13	49	193	548
A4GALT	0	0	48	0	0	0
AAAS	57	29	224	49	202	92
AACS	1904	1294	5073	5365	3737	3511
AADACL1	3	13	239	683	158	40
[]						

- ChIP-Seq
- Bar-Seq
- • •

Counting rules

- Count reads, not nucleotides
- Count each read at most once.
- Discard a read if
 - it cannot be uniquely mapped
 - its alignment overlaps with several genes
 - the alignment quality score is bad
 - (for paired-end reads) the mates do not map to the same gene

Counting rules

- Count reads, not nucleotic
- Count each read at most c
- Discard a read if
 - it cannot be uniquely ma
 - its alignment overlaps w
 - the alignment quality sc
 - (for paired-end reads) the same gene

Challenges with count data from high-throughput sequencing

discrete, positive, skewed

no (log-)normal model

small numbers of replicates

no rank based or permutation methods

large dynamic range (0 ... 10⁵)

heteroskedasticity matters

sequencing depth (coverage) varies between samples

"normalisation"

sequencing depth (library size) effect

Normalisation for library size

- If sample A has been sampled deeper than sample B, we expect counts to be higher.
- Simply using the total number of reads per sample is not a good idea; genes that are strongly and differentially expressed may distort the ratio of total reads.
- By dividing, for each gene, the count from sample A by the count for sample B, we get one estimate per gene for the size ratio or sample A to sample B.
- We use the median of all these ratios.

Sample-to-sample variation

comparison of two replicates

comparison of treatment vs control

The Poisson distribution

This bag contains many small balls, 10% of which are red.

Several experimenters are tasked with determining the percentage of red balls.

Each of them is permitted to draw 50 balls out of the bag, without looking.

5 / 50 = 10% 4/50 = 8%6 / 50 = 12% 11/50 = 22%

000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000
000000000000000000000000000000000000000

0000000
80000000
0000000
80000000

108/1	0	0	0	=
	1	0.	8	%

99/1000 = 9.9%

100/1000 = 10.0%

		<u></u>
		<u> </u>

222222222

107 / 1000 = 10.7%

Poisson distribution: the uncertainty of random sampling

expected number	standard deviation	relative error in estimate
of red balls	of number of red balls	for fraction of red balls
10	$\sqrt{10} = 3.2$	1/√10 = 31.6%
100	$\sqrt{100} = 10.0$	1/√100 = 10.0%
1,000	$\sqrt{1,000} = 31.6$	1/√1,000 = 3.2%
10,000	√ 10,000 = 100.0	$1/\sqrt{10,000} = 1.0\%$

The Poisson distribution is used for counting processes

Analysis method: ANOVA

$$N_{ij} \sim \mathrm{Poisson}(\mu_{ij})$$
 Noise part

$$\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}$$

Systematic part

- μ_{ij} expected count of region *i* in sample *j*
- s_j library size effect
- x_{kj} design matrix
- β_{ik} (differential) effect for region *i*

Analysis method: ANOVA

$$N_{ij} \sim ext{Poisson}(\mu_{ij})$$
 Noise part

$$\mu_{ij} = s_j \times \begin{cases} a_i & \text{if } j \in \text{group A} \\ b_i & \text{if } j \in \text{group B} \end{cases}$$

- μ_{ij} expected count of region *i* in sample *j*
- s_j library size effect
- x_{kj} design matrix
- β_{ik} (differential) effect for region *i*

For Poisson-distributed data, the variance is equal to the mean.

No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010), ...

For Poisson-distributed data, the variance is equal to the mean.

No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010), ...

Really? Are HTS count data Poisson distributed?

To figure this out, we have to take a closer look at replicates and the nature of the noise in the data.

mean

Based on the data of Nagalakshmi et al., Science 2008

mean

Based on the data of Nagalakshmi et al., Science 2008

So we need a better model

data are discrete, positive, skewed
→ no (log-)normal model

small numbers of replicates

no rank based or permutation methods

want to use parametric stochastic model to infer tail behaviour (approximately) from low-order moments (mean, variance)

large dynamic range (0 ... 10⁵)
 → heteroskedasticity matters

Model building block I: the negative-binomial distribution

$$P(K = k) = \begin{pmatrix} k + r - 1 \\ r - 1 \end{pmatrix} p^r (1 - p)^k, \qquad r \in \mathbb{R}^+, \ p \in [0, 1]$$

The NB distribution is used when the rate of a Poisson process is itself randomly varying

n = 59

mean

n = 59

n = 2

n = 59

n = 2

n = 59

mean

n = 59

n = 2

n = 2

mean

mean

Modelling Variance

To assess the variability in the data from one gene, we have
the observed standard deviation for that gene
that of all the other genes

Putting it all together

$$N_{ij} \sim \text{Poisson}(\mu_{ij})$$

Noise part

$$\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}$$

Systematic part

- μ_{ij} expected count of gene *i* in sample *j*
- s_j library size effect
- x_{kj} design matrix
- β_{ik} (differential) expression effects for gene *i*

Putting it all together

$$N_{ij} \sim \operatorname{NB}(\mu_{ij}, \alpha(\mu_{ij}))$$
 Noise part

$$\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}$$

Systematic part

- μ_{ij} expected count of
- s_j library size effec
- x_{kj} design matrix
- β_{ik} (differential) exp

Generalised linear model of the negative binomial family with smooth dispersion-mean relation α

The DESeq package

Negative binomial error modeling with intensity dependent dispersion

Anders and Huber, Genome Biol. 2010

Type-I error control

comparison of two replicates

comparison of treatment vs control

Conclusions I

- Proper estimation of variance between *biological* replicates is vital. Using Poisson variance is incorrect.
- Estimating variance-mean dependence with local regression works well for this purpose.
- The negative-binomial model allows for a powerful test for differential expression.
- S. Anders, W. Huber: "Differential expression analysis for sequence count data", Genome Biol 11 (2010) R106
- Software (*DESeq*) in Bioconductor.
Alternative splicing

So far, we counted reads in genes.

To study alternative splicing, reads have to be assigned to *transcripts*.

This introduces ambiguity, which adds uncertainty.

Current tools (e.g., cufflinks) allow to quantify this uncertainty.

However: To assess the significance of differences to isoform ratios between conditions, the assignment uncertainty has to be combined with the noise estimates.

This is not yet possible with existing tools.

Regulation of isoform abundance

- In higher eukaryotes, most genes have several isoforms.
- RNA-Seq is better suited than microarrays to see which isoforms are present in a sample.
- This opens the possibility to study regulation of isoform abundance ratios, e.g.: Is a given exon spliced out more often in one tissue type than in another one?
- DEXSeq, a tool to test for differential exon usage in RNA-Seq data - see labs.

Data set used to demonstrate DEXSeq

Genome Research

Research

21:193-202 © 2011

Conservation of an RNA regulatory map between *Drosophila* and mammals

Angela N. Brooks,^{1,7} Li Yang,^{2,7} Michael O. Duff,^{2,3} Kasper D. Hansen,⁴ Jung W. Park,^{2,3} Sandrine Dudoit,^{4,5} Steven E. Brenner,^{1,6,8} and Brenton R. Graveley^{2,3,8}

Drosophila melanogaster S2 cell cultures:

control (no treatment):

4 biological replicates (2x single end, 2x paired end)

treatment: knock-down of pasilla (a splicing factor)
3 biological replicates (1x single end, 2x paired end)

Alternative isoform regulation

Data: Brooks et al., Genome Res., 2010

Exon counting bins

Exon counting bins

Count table for a gene

number of reads mapped to each exon (or part of exon) in gene msn:

	treated 1	treated 2	control 1	control 2	
E01	398	556	561	456	
E02	112	180	153	137	
E03	238	306	298	226	
E04	162	171	183	146	
E05	192	272	234	199	
E06	314	464	419	331	
E07	373	525	481	404	
E08	323	427	475	373	
E09	194	213	273	176	
E10	90	90	530	398	<
E11	172	207	283	227	
E12	290	397	606	368	<
E13	33	48	33	33	
E14	0	33	2	37	
E15	248	314	468	287	
E16	554	841	1024	680	
[]				

?

FBgn0010909 -

treated untreated

Model

Model, refined

treatment

Model, refined

$$K_{ijl} = NB\left(s_j\mu_{ijl},\alpha\right)$$

jl

further refinement: fit an extra factor for library type (pairedend vs single)

expression strength in sample *j*

> fraction of reads falling onto exon *l* in control

 $\log \mu_{ijl}^{\prime} = \sum \beta_{ij}^{S} + \sum \beta_{il}^{E} x_{l}^{E} + \sum \beta_{ijl}^{ET} x_{l}^{E} x_{j}^{T}$

change to fraction of reads for exon *l* due to treatment

Dispersion estimation

- Standard maximum-likelihood estimate for dispersion parameter has (unacceptably) strong bias in the case of small sample size.
- A method-of-moments estimator (as used in DESeq) cannot be used due to crossed factors.
- We adapt the solution from the recent edgeR: Cox-Reid conditionalmaximum-likelihood estimation (edgeR: Robinson, McCarthy, Smyth (2010))

Dispersion estimation

Small sample size, so some data sharing is necessary to get power.

- one value fits all?
- one value for each gene?
- one value for each exon?

Dispersion vs mean

average normalized count value

Conclusion II

- Counting within exons and NB-GLMs allows studying isoform regulation.
- Proper statistical testing allows to see whether changes in isoform abundances are just random variation or may be attributed to changes in tissue type or experimental condition.
- Testing on the level of individual exons gives power and might be a helpful component for the study of alternative isoform regulation.

Alternative exon expression detected by ANOVA - GLM

k counts expression splicing transcripts

Simon Anders Alejandro Reyes

Joseph Barry Bernd Fischer Ishaan Gupta Felix Klein Gregoire Pau Aleksandra Pekowska Paul-Theodor Pyl

> Lars Steinmetz Eileen Furlong Paul Bertone Robert Gentleman Jan Korbel

Why testing for differential exon usage rather than for isoform abundance changes?

