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Two applications of RNA-Seq

* Discovery
* find new transcripts
* find transcript boundaries
* find splice junctions

* Comparison
Given samples from different experimental conditions,
find effects of the treatment on
* gene expression strengths
* isoform abundance ratios, splice patterns, transcript
boundaries



Alignment

Should one align against the genome or the transcriptome?

against transcriptome
* easier, because no gapped alignment necesssary

but:
* risk to miss possible alignments!




RNA-Seq

* Tag-Seq

Gene

13CDNA73 4

A2BP1l 19
A2M 2724
A4GALT 0
AAAS 57
AACS 1904
AADACL1 3
[...]

* ChlIP-Seq

Bar-Seq

GliNsl

G144

18
2209

29
1294
13

Countdatain HTS

Gle6

20
13
48
224
5073
239

G179

49

49
5365
683

CB541

193

202
3737
158

CB660

548

02
3511
40



Counting rules

 Count reads, not nucleotides
* Count each read at most once.
* Discard a read if
* it cannot be uniquely mapped
* its alignment overlaps with several genes
* the alignment quality score is bad
* (for paired-end reads) the mates do not map to
the same gene



Counting rules

e Count reads, not nucleotic
* Count each read at most c
* Discard a read if

* it cannot be uniquely me

* its alignment overlaps w
* the alignment quality sc
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the same gene



Challenges with count data from high-throughput
sequencing

discrete, positive, skewed

= no (log-)normal model

small numbers of replicates

= no rank based or permutation methods

large dynamic range (O ... 10°)
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sequencing depth (library size) effect
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Normalisation for library size

* If sample A has been sampled deeper than sample B, we
expect counts to be higher.

* Simply using the total number of reads per sample is not a
good idea; genes that are strongly and differentially
expressed may distort the ratio of total reads.

* By dividing, for each gene, the count from sample A by the
count for sample B, we get one estimate per gene for the
size ratio or sample A to sample B.

* We use the median of all these ratios.

Anders & Huber, Genome Biology 2010 (DESeq package)



log2 fold change

Sample-to-sample variation

comparison of comparison of
two replicates treatment vs control
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The Poisson distribution

This bag contains many small balls, 10%
of which are red.

Several experimenters are tasked with
determining the percentage of red balls.

Each of them is permitted to draw 50
balls out of the bag, without looking.
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Poisson distribution:
the uncertainty of random sampling

expected number standard deviation relative error in estimate
of red balls of number of red balls  for fraction of red balls

10 v10= 3.2 1WV10 =31.6%
100 v100= 10.0 1V100 =10.0%
1,000 v1,000= 31.6 1V1,000 = 3.2%

10,000 v10,000 =100.0 1V10,000= 1.0%
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The Poisson distribution is used for
counting processes
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Analysis method: ANOVA

Nz’ AU Poisson(,uij) Noise part

10g ,uij — Sj —+ E ﬂikmkj Systematic part
k

uii expected count of region 7 in sample j
sj library size effect

xi; design matrix

Pix (differential) effect for region i
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Nz’ AU Poisson(,uij) Noise part
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For Poisson-distributed data, the variance is equal to the mean.
No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al.
(2009), Kasowski et al. (2010), Bullard et al. (2010), ...



For Poisson-distributed data, the variance is equal to the mean.
No need to estimate the variance. This is convenient.

E.g. Marioni et al. (2008), Wang et al. (2010), Bloom et al.
(2009), Kasowski et al. (2010), Bullard et al. (2010), ...

Really?
Are HTS count data Poisson
distributed?

To figure this out, we have to
take a closer look at
replicates and the nature of
the noise in the data.
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So we need a better model

data are discrete, positive, skewed
= no (log-)normal model

small numbers of replicates

= no rank based or permutation methods

= want to use parametric stochastic model to infer tail
behaviour (approximately) from low-order moments (mean,
variance)

large dynamic range (O ... 10°)
= heteroskedasticity matters
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The NB distribution is used when the rate of
a Poisson process is itself randomly varying
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standard deviation

Model building block Il: variance regularisation and local
regression on the mean
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standard deviation

Model building block Il: variance regularisation and local
regression on the mean
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Model building block Il: variance regularisation and local
regression on the mean
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Modelling Variance

To assess the variability in the data from one gene, we have
* the observed standard deviation for that gene

e that of all the other genes




Putting it all together

Noise part

N;; ~ Poisson(p;;)

log qu] p— Sj —|— g /sz :ij Systematic part
k

uii expected count of gene i in sample j

sj library size effect

xi design matrix

Pir (differential) expression effects for gene i



Putting it all together
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The DESeq package

Negative binomial error modeling with intensity dependent

dispersion
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Anders and Huber, Genome Biol. 2010
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Type-| error control

comparison of comparison of
two replicates treatment vs control
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Two component noise model aids
experimental design

var = Y + cp?

A N
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Conclusions |

* Proper estimation of variance between biological
replicates is vital. Using Poisson variance is incorrect.

* Estimating variance-mean dependence with local
regression works well for this purpose.

* The negative-binomial model allows for a powerful test
for differential expression.

* S. Anders, W. Huber: “Differential expression analysis for
sequence count data”, Genome Biol 11 (2010) R106
* Software (DESeq) in Bioconductor.



Alternative splicing

So far, we counted reads in genes.

To study alternative splicing, reads have to be assigned to
transcripts.

This introduces ambiguity, which adds uncertainty.
Current tools (e.g., cufflinks) allow to quantify this uncertainty.

However: To assess the significance of differences to isoform
ratios between conditions, the assignment uncertainty has to
be combined with the noise estimates.

This is not yet possible with existing tools.



Regulation of isoform abundance

® |[n higher eukaryotes, most genes have several isoforms.

* RNA-Seq is better suited than microarrays to see which
isoforms are present in a sample.

® This opens the possibility to study regulation of isoform
abundance ratios, e.g.: Is a given exon spliced out more
often in one tissue type than in another one?

e DEXSeq, a tool to test for differential exon usage in RNA-
Seq data - see labs.



Data set used to demonstrate DEXSeq

Genome Research

21:193-202 © 2011
Research -

Conservation of an RNA regulatory map between
Drosophila and mammals

Angela N. Brooks,"” Li Yang,”” Michael O. Duff,?> Kasper D. Hansen,* Jung W. Park,*>
Sandrine Dudoit,** Steven E. Brenner,'*®® and Brenton R. Graveley**®

Drosophila melanogaster S2 cell cultures:

* control (no treatment):
4 biological replicates (2x single end, 2x paired end)

* treatment: knock-down of pasilla (a splicing factor)
3 biological replicates (1x single end, 2x paired end)



Alternative isoform regulation
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Exon counting bins




Exon counting bins




Count table for a gene

number of reads mapped to each exon (or part of exon) in gene msn:

EO1
E02
EO3
EO4
EO5
EO6
EOQ07
EOS8
EO9
E10
El1l
E12
E13
El4
E15
El6

[...
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238
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0
248
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1024

control 2
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Model

Kii1 = NB (s;piji, )

/ / N\
counts in gene i, size dispersion
sample j, exon factor

log pij1 :ﬁ?—FZlea:l +Z i % +Zﬁwl s

VR \

expression change in

strength in expression due to

control treatment
fraction of change to
reads falling fraction of reads
onto exon /in for exon I due to

control treatment



Model, refined

Kii1 = NB (s;piji, )

_

log/j’Z]l_ZIB +Zﬁlml +ZB la?l

expression

strength in

samplej
fraction of change to
reads falling fraction of reads
onto exonlin for exon I due to

control treatment



Model, refined

K1 = NB (s, further refinement:

fit an extra factor for

library type (paired-
logﬂwl — Zﬁ T Zﬁlml + ZB 1 'Tl

end vs single)

expression

strength in

samplej
fraction of change to
reads falling fraction of reads
onto exonlin for exon I due to

control treatment



Dispersion estimation

* Standard maximum-likelihood estimate for dispersion parameter has
(unacceptably) strong bias in the case of small sample size.

* A method-of-moments estimator (as used in DESeq) cannot be used
due to crossed factors.

* We adapt the solution from the recent edgeR: Cox-Reid conditional-
maximum-likelihood estimation (edgeR: Robinson, McCarthy, Smyth
(2010))



Dispersion estimation

Small sample size, so some data sharing is necessary to get power.

* one value fits all?
* one value for each gene?
e one value for each exon?



ISpersion vs mean
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Conclusion i

* Counting within exons and NB-GLMs allows studying isoform
regulation.

* Proper statistical testing allows to see whether changes in
isoform abundances are just random variation or may be
attributed to changes in tissue type or experimental condition.

* Testing on the level of individual exons gives power and might be
a helpful component for the study of alternative isoform
regulation.



Alternative exon expression detected by ANOVA - GLM
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Why testing for differential exon usage rather
than for isoform abundance changes?

control treatment

=
=

=
H
=
H

control 90% in 50% in

treatment 10% in 50% in



