
aroma.seq:
Bringing sequence analysis
to the Aroma Framework

Henrik Bengtsson
(MSc Comp Sci, PhD Math. Statistics)
Dept. of Epidemiology & Biostatistics, Division of Bioinformatics, UC San Francisco
UCSF Helen Diller Family Comprehensive Cancer Center

with Adam Olshen, Ritu Roy, Taku Tokuyasu (+ all Aroma Framework contributors)

Bioconductor European Developers' Workshop, Zurich, December 13-14, 2012

• Organizers Mark Robinson and Michal Okoniewski.

• Irene Hofmann et al.

• Institute of Molecular Life Sciences,
ETH Zurich, and University of Zurich.

• The Bioconductor Project/Team & its developers.

• All presenters and participants!

Thank you all!

Outline

• Overview of the Aroma Framework.

• aroma.seq: proof-of-concept DNAseq analysis.

• My tips and tricks for large data analysis.

This is a 25-minute presentation, where the first two parts take 20 minutes and
the last part 5 minutes.

The Aroma Framework

• Unlimited data sizes, e.g. 10,000 Affymetrix microarrays.

• Persistent memory, results live beyond R’s quit().

• Fault tolerant, e.g. recovery even from power failures.

• Portable / shareable, i.e. same script works everywhere.

• Cross platform, e.g. Unix, OS X, Windows.

• Leverages CRAN and Bioconductor packages.

• Reproducible research.

• Extendable, i.e. add your own methods.

• aroma-project.org

Some numbers:

Since 2006. ~500 installs last month. ~800 on mailing list.

100+ citations. 100,000+ lines (excl. comments)

The Aroma Framework
- Worry-free large-scale analysis in R

http://aroma-project.org/
http://aroma-project.org/
http://aroma-project.org/

setA/

 fileA,20100112.csv

 fileB,other,tags.tsv

 fileC,inverted.csv

 fileD,3cols.csv

> library(R.filesets)

> df <- GenericDataFile(“setA/fileA,20100112.csv”)

> df

GenericDataFile:

Name: fileA

Tags: 20100112

Full name: fileA,20100112

Pathname: setA/fileA,20100112.csv

File size: 2.88 MB (2,949,102 bytes)

RAM: 0.00 MB

> getChecksum(df)

[1] "fcb889d29d51c600409d242e03d7d779“

R.filesets is the core and knows about files

> df <- TabularTextFile(“setA/fileA,20100112.csv”)

> df

TabularTextFile:

Name: fileA

Tags: 20100112

Full name: fileA,20100112

Pathname: setA/fileA,20100112.csv

File size: 2.88 MB (2,949,102 bytes)

RAM: 0.00 MB

Number of data rows: 17987

Columns [4]: 'x', 'y', 'fac', 'char'

Number of text lines: 18004

> readDataFrame(df, rows=c(5,4,1),

 colClasses=c("(x|y)"="integer"))

 x y

5 10 5

4 12 4

1 19 1

> ds <- GenericDataFileSet$byPath(“setA/”)

> ds

GenericDataFileSet:

Name: setA

Number of files: 4

Names: fileA, fileB, fileC, fileD [4]

Path (to the first file): setA/

Total file size: 10.00 MB

RAM: 0.01MB

> lapply(ds, FUN=getChecksum)

$`fileA,20100112`

[1] "fcb889d29d51c600409d242e03d7d779"

$`fileB,other,tags`

[1] "e0e0d2750626df38cedab8796cfa6459“

…

R.filesets makes it easy to handle
large sets of files of any size and any type

> ds <- TabularTextFileSet$byPath(“setA/”)

> ds

TabularTextFileSet:

Name: setA

Number of files: 4

Names: fileA, fileB, fileC, fileD [4]

Path (to the first file): setA/

Total file size: 10.00 MB

RAM: 0.01MB

> readDataFrame(ds, rows=c(1,5),

 colClasses=c("(x|y)"="integer"))

 x y

1.1 19 1

1.5 10 5

2.1 15 4

2.5 32 9

…

Standardized and strict file structure:

annotationData/chipTypes/HG-U133_Plus_2/HG-U133_Plus_2.CDF
rawData/GSE13159/HG-U133_Plus_2/*.CEL (2096 files)

> library(aroma.affymetrix)

> dsR <- AffymetrixCelSet$byName(“GSE13159”, chipType=“HG-U133_Plus_2”)

> dsR

AffymetrixCelSet:

Name: GSE13159

Path: rawData/GSE13159/HG-U133_Plus_2

Chip type: HG-U133_Plus_2

Number of arrays: 2096

Names: GSM329407, GSM329408, GSM329409, ..., GSM331732 [2096]

Total file size: 27.09 GB

RAM: 2.19MB

aroma.affymetrix:
Analyzing small and large Affymetrix data sets

> dsR <- AffymetrixCelSet$byName(“GSE13159”, chipType=“HG-U133_Plus_2”)
> ces <- doRMA(dsR)
> eset <- extractExpressionSet(ces)
> eset

ExpressionSet (storageMode: lockedEnvironment)
assayData: 54675 features, 2096 samples
 element names: exprs
protocolData: none
phenoData: none
featureData: none
experimentData: use 'experimentData(object)‘
Annotation: hgu133plus2

Example: RMA on 2,096 arrays

> dsR <- AffymetrixCelSet$byName(“GSE8605”, chipType=“Mapping10K_Xba142”)

> ex <- ArrayExplorer(dsR)
> process(ex)

Example: Spatial visualization of arrays

http://www.aroma-project.org/data/reports/GSE8605/raw/ArrayExplorer.html

> dsR <- AffymetrixCelSet$byName(“GSE8605”, chipType=“Mapping10K_Xba142”)

> dsN <- doCRMAv2(dsR)

> seg <- CbsModel(dsN)

> ex <- ChromosomeExplorer(seg)
> process(ex)

Example: DNA copy number segmentation

http://www.aroma-project.org/data/reports/GSE8605/ACC,-XY,BPN,-XY,AVG,FLN,-XY,paired/ChromosomeExplorer.html

Software Design:

• All in R (“R is the glue”).

• Cross platform, e.g. Unix, OS X, Windows.

• Leverages CRAN and Bioconductor packages.

• Standardization, e.g. file & directory structure.

• “Functional in the small, OO in the large” [Luke Hoban (F#) via John D. Cook (The Endeavour blog)]

Software Quality: [code base is 100,000+ lines (excl. comments)]

• Rich set of system, redundancy and reproducibility tests (> 24 CPU hours).

• All releases are validated so they don’t break any downstream packages.

• Embrace bug/error reports.

• Software robustness, e.g. asserting arguments and results.

Software Engineering

Outline

• Overview of the Aroma Framework.

• aroma.seq: proof-of-concept DNAseq analysis

• My tips and tricks for large data analysis.

aroma.seq

Currently (before bringing it into BioC):

• Sequence analysis is done with a variety of software via the command line.

• Error prone, e.g. manual file handling and lots of tedious parameter specifications.

• Highly specific to a given computer environment/setup.

• Complicated to share script.

Objectives aroma.seq:

• Everything available at the R prompt.

• Utilize Bioconductor tools and external tools such as Bowtie, BWA, TopHat and Cufflink.

• Reproducible research, e.g. easy to share scripts.

• Automate tedious tasks, e.g. sorting and indexing of BAM files, handling SAM Read Groups.

• Provide standardized pipelines, e.g. DNAseq copy number analysis with strong quality control.

• Transparent utilizing of compute clusters.
 => Same script for single-thread as compute cluster processing.

• Availability: Early 2013 by request. Mid/late 2013 publicly.

aroma.seq: Start-to-end NGS analysis in R

Classical total copy-number analysis
with low-coverage DNAseq

Data
• DNASeq: Illumina

• Multiplex: 20 samples per lane

• Low depth: 0.2x coverage per sample

Acknowledgements and original method approach
• Ilari Scheinin, Daoud Sie, Bauke Ylstra (VUMC, Amsterdam)

Classical total copy-number analysis
with low-coverage DNAseq (in 7 steps)

2. Setup DNAseq data

Setup FASTQ files

dsR <- FastqDataSet$byName("SCC", “Solexa")

Unlimited number of samples can be loaded

even on small computers, e.g. 1 or 10,000.

1. Load R package

library(aroma.seq)

capabilitiesOf(aroma.seq)

=> bowtie2, bwa, gatk, picard, samtools …

Classical total copy-number analysis
with low-coverage DNAseq (in 7 steps)

3. Align reads to genome

Setup (FASTA) genome reference
fa <- FastaReferenceFile$byName("human_g1k_v37”)

Burrows-Wheeler Alignment (FASTQ -> BAM)

alg <- BwaAlignment(dsR, ref=fa, n=2, q=40)

bs <- process(alg)

Internal validation detects common user mistakes

and data errors so they are not propagated in the

analysis. User do not have to deal with tedious

details (e.g. SAM header groups).

Classical total copy-number analysis
with low-coverage DNAseq (in 7 steps)

4. Bin and count reads

(BAM -> Aroma count files)

ugp <- getAromaUgpFile(fa, “50kb")

bc <- TotalCnBinnedCounting(bs, targetUgp=ugp)

dsB <- process(bc)

5. Normalize for GC content

bgn <- BinnedGcNormalization(dsB)

dsG <- process(bgn)

Removing GC content effects makes it possible

to estimate copy numbers without a reference.

Image courtesy: Chiang et al. (2009)

Classical total copy-number analysis
with low-coverage DNAseq (in 7 steps)

6. Segmenting total CNs

seg <- CbsModel(dsG)

fit(seg)

The aroma.seq package leverages highly

specialized sequencing and statistical tools.

7. Chromosome Explorer

ce <- ChromosomeExplorer(seg)

process(ce)

A Chromosome Explorer report can be viewed
in any modern web browser (offline and online).

Outline

• Overview of the Aroma Framework.

• aroma.seq: proof of concept DNAseq analysis.

• My tips and tricks for large data analysis.

Constant Memory Utilization

“Even if it works for you today, assume that
tomorrow there will be no machine in Universe

that can fit all of your data into RAM.”

• Already from day #1, design your method (statistical model and/or
algorithm) such that only a fixed-size subset of the data needs to be in
memory at any time.

• Load data into memory only when needed and discard as soon as
possible.

• This will also make it much easier to parallelize your methods later.

Classical example: Rank-based Quantile Normalization
• The naive approach requires all samples to be loaded into memory from

start, but…
• …with a two-pass read of the data, only two samples need to be kept in

memory at any time.

Also as a non-programming statistician
you can help out a lot

Memoization

“Memorize the results of repetitive
computationally expensive tasks”

Question: What is 7 times 8?
1. Multiply(7, 8) = 8 + 8 + 8 + 8 + 8 + 8 + 8 = … = 56
2. Memorize (multiplication table):

3. Multiply(7, 8) = { “look up memoized result” } = 56

Each kid learn memoization in school

getbdry <- function(nperm, beta, aux=NA) {

 # 1. Already calculated?
 key <- list("getbdry", nperm=nperm, beta=beta) <= FULL CONTROL
 if (!is.null(res <- loadCache(key))) return(res)

 # 2. Calculate (takes a long time)
 res <- DNAcopy::getbdry(nperm=nperm, beta=beta)

 # 3. Store result (across R sessions)
 saveCache(res, key=key)

 res

}

getbdry(1000, 0.5) # <= Slow!

getbdry(1000, 0.5) # <= Instant from cache.

R.cache memoizes to file

Related packages:
• digest
• Biobase::cache()
• memoise
• cacher
• filehash
• …

Software Robustness

“Errors WILL occur one way or the other!
–

write your code so
the impact of errors is minimal and

make sure they don’t pass undetected”

Typical errors:

• Software bugs.

• User passes non-expected argument values.

• Corrupt data files.

• Session interrupts, e.g. sysadm reboot a computer.

• Hardware failures, e.g. power outage and network
failures.

Long-running analyzes needs fault tolerant
software

Pre- and post-condition contracts; each function asserts that:

- the arguments received, and
- the returned values

are of proper types and have proper values, otherwise an
exception is thrown. For instance, if a function returns a p-value,
assert that it is indeed in [0,1] before returning.

Example:
stopifnot(length(p) == 1 && 0 <= p && p <= 1)

library(R.utils)
p <- Arguments$getNumeric(p, range=c(0,1))

Don’t let errors propagate
- catch them ASAP

png("myPlot.png", width=640, height=480)
curve(dnorm, from=-3, to=+3)
abline(v=log("1"))
dev.off()

Atomicity
- Don’t generate incomplete results

myPlot <- function() {
 png("myPlot.png", width=640, height=480)
 on.exit(dev.off())
 curve(dnorm, from=-3, to=+3)
 abline(v=log("1"))
}

myPlot()

Use on.exit() whenever possible

library("R.devices")

toPNG("myPlot", aspectRatio=3/4, {
 curve(dnorm, from=-3, to=+3)
 abline(v=log("1"))
})

The default behavior of toPNG() is to generate either complete image files
or none (atomic). This is achieved by:

1. Write to a temporary file
2. Rename file only iff code complete successfully

This strategy also works with more serious software interrupts (e.g. power
failures) and not only for image files.

R.devices generates image files atomically

Distributed processing

“…is awesome, R helps you a lot,
but it’s not business as usual.”

• Time outs and errors WILL occur and compute nodes will go down, leaving
unfinished/corrupt results. In other words, write fault-tolerant code.

• Do NOT assume that file updates are instantaneous, e.g. it can take up to 30
seconds for one machine to see a file modification of another machine.

• SQLite does NOT guarantee atomic updates across machines - you will

eventually corrupt your database if you assume that.
(It’s only a valid assumption on a single machines with properly setup)

• Do NOT assume your processes are automagically synchronized - when scaling

up such mistakes will come back and bite you (…and hopefully you notice).

• Above errors are hard to troubleshoot, because they only occur once in a while.

Also advanced developers run into unexpected
problems with parallelized computing

Thank you!

