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Road map of talk

Brief review of scientific objective: cis-gQTL
detection

Software pkg + data pkg can be effective for high
volume data

Special data representations have been important
Thorough sensitivity analysis requires high
performance

Sensitivity to basic tuning parameter settings
exists for cis-eQTL



eQTLs are SNP associated with expression variation
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Figure 1. Plausible sites of action for genetic determinants of mRNA
levels. Genetic variations influencing gene expression may reside within
the regulatory sequences, promoters, enhancers, splice sites, and second-

ary structure motifs of the target gene and so be genetically in cis (red
stars), or there may be variations in the molecular machinery that interact

with cis-regulatory sequences and so act genetically in trans (blue stars).

Williams R et al. Genome Research 2007 vol. 17 (12) pp. 1707-1716



Localizing the specific determinant of
variation is difficult
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A daunting problem of statistical
inference?

 An eQTL search is essentially O(10000) GWAS
— The phenotypes are the components of the transcriptome

— The predictors are SNP contents at as many as 37 million
“1KG” SNP (imputed)

— Single SNP tests are a reasonable but difficult starting place
* The special case of “cis” testing: SNP of interest are
near the gene

— Will focus on the gene-centric question: does gene g have
an eQTL nearby?

— How far to go?
— How to calibrate the tests?
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DNase I sensitivity QTLs are a major determinant of
human expression variation

Jacob F. Degner"?*, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras'*, Daniel J. Gaffney"*, Joseph K. Pickrell’,
Sherryl De Leon®, Katelyn Michelini*, Noah Lewellen’, Gregory E. Crawford™®, Matthew Stephens™’, Yoav Gilad'

& Jonathan K. Pritchard™*

The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation’ °. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which
genetic variation leads to gene expression differences among
humans. We used DNasel sequencing to measure chromatin
accessibility in 70 Yoruba lymphoblastoid cell lines, for which

genome-wide genotypes and estimates of gene expression levels
are alen availahle®® Wo ahtained a tatal af 2 7 hillinn unianelv

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNasel cleavage, often producing recognizable ‘footprints’ of
decreased DNase I sensitivity''* "7,

We collected DNase-seq data for 70 HapMap Yoruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes
were already available® *. We obtained an average of 39 million uniquely
mapped DNase-seq reads per sample, providing individual maps of
chromatin accessibility for each cell line (see Supplementary Informa-
tion for all analysis details). Our data allowed us to characterize the
distribution of DNasel cuts within individual hypersensitive sites at
ovtromely hich reenliitinn Ac synected the NHSe enincided ta a oreat



a Joint dsQTL-eQTL example

DHS regulating SLFN5 RNA-seq gene expression for SLFNS
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Figure 3 | Relationship between dsQTLs and eQTLs. a, Example of adsQTL  (right) measurer
SNP that is also an eQTL for the gene SLEN5. The SNP disrupts an interferon-  genotypeatther
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Another problem: global expression measures
exhibit significant technical variation

OPEN () ACCESS Freely available online PLOS computationaL sioLoGY

A Bayesian Framework to Account for Complex Non-
Genetic Factors in Gene Expression Levels Greatly
Increases Power in eQTL Studies

Oliver Stegle**>, Leopold Parts>”, Richard Durbin?®, John Winn®*

1 Max Planck Institutes Tdbingen, TObingen, Germany, 2 University of Cambridge, Cambridge, United Kingdom, 3 Wellcome Trust Sanger Institute, Hinxton, Cambridge,
United Kingdom, 4 Microsoft Research, Cambridge, United Kingdom

Abstract

Gene expression measurements are influenced by a wide range of factors, such as the state of the cell, experimental
conditions and variants in the sequence of regulatory regions. To understand the effect of a variable of interest, such as the
genotype of a locus, it is important to account for variation that is due to confounding causes. Here, we present VBQTL, a
probabilistic approach for mapping expression guantitative trait loci (eQTLs) that jointly models contributions from
genotype as well as known and hidden confounding factors. VBQTL is implemented within an efficient and flexible
inference framework, making it fast and tractable on large-scale problems. We compare the performance of VBQTL with
alternative methods for dealing with confounding variability on eQTL mapping datasets from simulations, yeast, mouse, and
human. Employing Bayesian complexity control and joint modelling is shown to result in more precise estimates of the
contribution of different confounding factors resulting in additional associations to measured transcript levels compared to
alternative approaches. We present a threefold larger collection of cis eQTLs than previously found in a whole-genome eQTL
scan of an outbred human population. Altogether, 27% of the tested probes show a significant genetic association in cis,




Another problem: SNPs have varying
minor allele frequencies

Observed genotype at a SNP has possible
values AA, AB, BB

Additive genetic model uses the count of B
alleles, for example, as a continuous predictor
in linear regression

When B alleles are rare, the slope estimator
has higher variance

Can set a lower bound on MAF for SNP to be
tested, but this is unpleasant
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Some underpinnings of an eQTL
solution (Bioconductor GGtools)

Data packages with decomposed genotype data
manage the SNP volumes: GGdata, hmyriB36, dsQTL

Clayton’s snpStats package: a byte-code for genotype
probabilities

— Compact representation of large SNP sets

— Special code for GLMs to conduct GWAS

Adler et als ff package: flexible matrix-like interface to
‘flat files” external to RAM

R’s parallel package for concurrent computing on
multicore hardware

A decouple/recouple approach to computing genome-
wide FDR



Representing (uncertain) SNP genotypes: David
Clayton’s byte-sized encoding
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Nota bene

* This representation can be used to handle
pure genotype calls or Mach or Beagle
Imputation outputs as posterior genotype
distributions

 Hand-coded GLM provided in snpStats to
operate on this representation as ind/dep
variable

* Question: templating for modeling
algorithms? — see RcppEigen



ff to reduce memory consumption

How the creation of n values effects the run-time virtual memory address space:

££f object: native R vector:
> £fOb <- ff (”"foo” ,8000000) > rObj <- numeric (8000000)
> aVal <- ££fOb[1:2000000] > aVal <- rObj[1:2000000]

H aoedg ssa.ppy Alowspy [enuiA

The amout of memory required The amout of memory required
by an ££ object. by a native R vector object. [] 512 kilobytes




Flexible approach to concurrent,
interruptible computing

Multiple cores on one machine can
simultaneously populate an ff archive

Archive for a chromosome is harvested for
best SNP per gene when all genes are done

This applies to both the observed association
scores and associations under permutation

When all chromosomes are done, the full
permutation realization is assembled from the
chromosome-specific realizations



N.B. rhdf5 assessment

e | chose ff well before rhdf5 matured

* Recent comparisons show that for this
application, the two approaches have reasonably

similar performance
— Multicore writes seem OK for this application
— Chromosomes to nodes, genes to cores

* |t would be nice to have an abstraction for “out of
memory” computations so that alternate back-
ends can easily be compared and swapped



Still needed for sensitivity analyses

* Managing one run is reasonably tractable

e Specifying and managing the results of a
sensitivity search — still difficult

* Most clusters will have some kind of job
submission/management system

— Our group uses SGE/N1, with gmake ...

* These are often not well-matched to
requirements of statistical investigations



The BatchJobs “vignette”, TU

ort

Dortmund

Computing on
high performance clusters
with R:
Packages BatchJobs and
BatchExperiments

Bernd Bischl, Michel Lang,

Olaf Mersmann,
Jorg Rahnenfuhrer, Claus Weihs



/_\?

static problem part dynamic problem function problem algorithm function
static in addProblem() dynamic in addProblem() "ihstance algorithm in addAlgorithm()
problem é parameters algorithm é parameters
[ problem iterator ] [ algorithm iterator ]
problem design algorithm design

design/exhaustive in makeDesign () design/exhaustive in makeDesign()

Figure 2: Relationship of BatchExperiment functions. Grey rectangulars require user
input. White boxes represent internal functions. A straight arrow stands for direct
passing of the object or function, a squiggly line denotes passing of the evaluated result.



BatchJobs’ functions

Creating the Registry | makeRegistry )

batchMap
Defining Jobs batchReduce
batchExpandGrid
Submitting Jobs
Status & Debugging
Subsetting Jobs ( find Jobs )

Collecting Results

Common functions

batchMapResults
batchReduceResults

( submitJobs )

showStatus
testJob
showlLog

findDone, findErrors, ...

reduceResults
filterResults
reduceResults[AggrType]

BatchExperiments’ functions

(makeEkporimentRegistry]

addProblem
addAlgorithm
makeDesign
addExperiments

| summarizeExperiments |

(  findExperiments |

[reduceResultsExperiments]




Upshots

High level tools are emerging to smooth the
path from statistical computing requirements
to effective use of available hardware

— CPUs/GPUs

— Disk

— Network

Mastery will take work
The environment is volatile

Some example results:



> g3[1:5]
GRanges with 5 ranges and 11 elementMetadata cols:

seqnames ranges strand | snpid snploc
<Rle> <IRanges> <Rle> | <character> <integer>
[1] chri7 [73127217, 73127217] * | ra37368075 73127217
[2] chri6 [ 641445, 641445] = | rs35585285 641445
[3] chr2 [65605703, 65605703] * | rs2217969 65605703
[4] chri6 [24047271, 24047271)] * | chr16:24047271 24047271
[s] chrl [68737383, 68737383] * | rs59129922 68737383
radiusUsed fdr probe excl maf
<pumeric> <numeric> <character> <character> <character>
[1] 50000 0.0001943635 01YintXoV6ek6AxLgA 0 0.05
[2] 50000 0.0003236246 02KGS0OKODEIS10L3SkU 0 0.05
[3] 50000 0.0000000000 03tSCXVYVVCc.nRPBA 0 0.05
[4] 50000 0.0000000000 04.BQghpSolySHS17o0 0 0.05
[5] 50000 0.0000000000 04jcQvhWQopUosopS5I 0 0.05
nperm npc beatfdr Sym
<character> <character> <numeric> <character>
[1] 3 (32,31,21,19)*1.50 0 NTSC
[2] 3 (32,31,21,19)*1.50 0 WFIKKN1
[3] 3 (32,31,21,19)*1.50 0 SPRED2
[4] 3 (32,31,21,19)*1.50 0 PRKCE
[s] 3 (32,31,21,19)*1.50 0 WLS
seqlengths:
chrl chri0 chril chri2 chri3 chri4 ... chr4 chr5 chr6 chr7 chr8 chrdS
NA NA NA NA NA NA ... NA NA NA NA NA NA

> sum(values(g3)8fdr <= 0.05)
[1] 3261



score

max assoc. score per gene
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Conclusions

* Genomic annotation (gene, SNP names/
locations) conveniently available through a
given APl in 2005, much has changed ...
refactor?

* Basic R/bioc facilities facilitate thorough
sensitivity analysis

* Sensitivity is apparently present, so criteria for
choosing tuning parameters should be sought



