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Abstract

This vignette describes how to use the Bioconductor package DEXSeq to detect quantitatively different usage of
exons from shotgun RNA sequence (RNA-seq) data. The statistical model is based on generalised linear models of
the Negative Binomial family (NB-GLMs) and aims to detect changes between experimental conditions of interest
that are significantly larger than the technical and biological variability among replicates. The method is described
in [2]. It is a specialisation of the NB-GLM approach at the overall gene level provided by the DESeq [1] and
edgeR [4] packages. As input, DEXSeq uses the number of reads mapping to each of the exons of a genome.
Here, the method is demonstrated on the data from the package pasilla. To cite this software, please refer to
citation("DEXSeq").
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1 The Pasilla data set

Brooks et al. [3] investigated the effect of siRNA knock-down of the gene pasilla on the transcriptome of fly S2-DRSC
cells. The pasilla protein is known to bind to mRNA in the spliceosome and is thought to be involved in the regulation
of splicing. The pasilla gene is the Drosophila melanogaster ortholog of mammalian NOVA1 and NOVA2. The data
set, which is provided by NCBI Gene Expression Omnibus (GEO) under the accession number GSE185081, contains 3
biological replicates of the knockdown as well as 4 biological replicates of the untreated control.

Here, we will use these data to demonstrate the DEXSeq package. They are provided in the object pasillaExons

in the pasilla package. We start by loading the DEXSeq package and the example data.

> library("DEXSeq")

> library("pasilla")

> data("pasillaExons", package="pasilla")

The data command above has loaded the object pasillaExons, which is an object of class ExonCountSet. This is
the central data class of DEXSeq: at the beginning of an analysis, the user creates an ExonCountSet object that
contains all the requried data and metadata. In the course of the analysis workflow, the intermediate and final results
of computations are stored in the object, too.

We defer the discussion of how you can create such an object from your own data to Section 9 and instead start
with inspecting the example data object.

The ExonCountSet class is derived from eSet, Bioconductor’s standard container class for experimental data. As
such, it contains the usual accessor functions for sample, feature and assay data (including pData, fData, experiment-
Data), and some specific ones. The accessor function design shows the available sample annotations.

> design(pasillaExons)

condition type

treated1fb treated single-read

treated2fb treated paired-end

treated3fb treated paired-end

untreated1fb untreated single-read

untreated2fb untreated single-read

untreated3fb untreated paired-end

untreated4fb untreated paired-end

The read counts can be accessed with the counts function. We print the first 20 rows of this table:

> head( counts(pasillaExons), 20 )

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb untreated4fb

FBgn0000256:E001 92 28 43 54 131 51 49

FBgn0000256:E002 124 80 91 76 224 82 95

FBgn0000256:E003 340 241 262 347 670 260 297

FBgn0000256:E004 250 189 201 219 507 242 250

FBgn0000256:E005 96 38 39 71 76 57 62

FBgn0000256:E006 1 0 1 0 2 0 2

FBgn0000256:E007 149 70 71 130 281 115 94

FBgn0000256:E008 190 124 129 137 345 137 136

FBgn0000256:E009 43 17 25 4 9 2 4

FBgn0000256:E010 26 13 11 8 20 6 5

FBgn0000256:E011 14 3 8 4 20 3 2

FBgn0000256:E012 1 2 2 0 1 0 0

FBgn0000256:E013 2 2 4 0 0 0 0

FBgn0000256:E014 2 0 1 0 0 0 0

FBgn0000256:E015 58 28 44 46 131 96 69

FBgn0000256:E016 93 22 34 73 209 54 36

FBgn0000256:E017 1 0 0 0 0 0 0

FBgn0000578:E001 2 0 0 1 0 0 1

FBgn0000578:E002 3 4 0 2 0 0 1

FBgn0000578:E003 96 34 27 74 64 18 26

1http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE18508
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The rows are labelled with gene IDs (here Flybase IDs), followed by a colon and a counting bin number. A counting bin
corresponds to an exon or part of an exon. The table content indicates the number of reads that have been mapped
to each counting bin in the respective sample.

To see details on the counting bin, we also print the first 6 lines of selected columns of the feature data annotation:

> head(fData(pasillaExons)[,c(1,2,9:12)])

geneID exonID chr start end strand

FBgn0000256:E001 FBgn0000256 E001 chr2L 3872658 3872947 -

FBgn0000256:E002 FBgn0000256 E002 chr2L 3873019 3873322 -

FBgn0000256:E003 FBgn0000256 E003 chr2L 3873385 3874395 -

FBgn0000256:E004 FBgn0000256 E004 chr2L 3874450 3875302 -

FBgn0000256:E005 FBgn0000256 E005 chr2L 3878895 3879067 -

FBgn0000256:E006 FBgn0000256 E006 chr2L 3879652 3880038 -

pasillaExons contains only a subset of 46 genes that we selected from the genome-wide data set of [3]; we consider
this subset so that this vignette can be run quickly. For your own analyses, you would typically consider a genome-wide
data set. Of the 46 genes, there is one with 36 exons, and three with 16 exons:

> table(table(geneIDs(pasillaExons)))

0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17

14424 2 3 3 2 4 2 3 3 3 2 3 2 1 3 2

19 22 23 24 25 36

1 1 3 1 1 1

In Section 9, we explain how you can create analogous data objects from your own data.

2 Normalisation

Different samples might be sequenced with different depths. In order to adjust for such coverage biases, we estimate
size factors, which measure relative sequencing depth. DEXSeq uses the same method as DESeq, which is provided
in the function estimateSizeFactors.

> pasillaExons <- estimateSizeFactors(pasillaExons)

> sizeFactors(pasillaExons)

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb untreated4fb

1.336 0.800 0.922 0.991 1.568 0.838 0.830

2.1 Helper functions

The .Rnw file that underlies this document contains the definition of helper functions that this lab uses for the
preparation of plots: plotDispEsts and plotMA. Before preceding, please run the code chunk where these functions are
defined, so you have them available in your workspace. (In future versions of the DEXSeq package, these functions
will already be defined in the package.)

3 Dispersion estimation

To test for differential expression, we need to estimate the variance of the data. This is necessary to be able to
distinguish technical and biological variation (noise) from real effects on exon expression due to the different conditions.
The information on the size of the noise is infered from the biological replicates in the data set. However, in RNA-seq
experiments the number of replicates is often too small to estimate variance or dispersion parameters individually exon
by exon. Instead, variance information is shared across exons and genes, in an intensity dependent manner.

The first step is to get a dispersion estimate for each exon. This task is performed by the function estimate-
Dispersions, using Cox-Reid (CR) likelihood estimation (our method follows that of the package edgeR [4]). Before
starting estimating the CR dispersion estimates, estimateDispersions first defines the “testable” exons, which fulfill
the following criteria:

1. The exon’s total sum of counts over all samples is higher than the parameter minCount,

2. the exon comes from a gene that has at most maxExon exons, and
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Figure 1: Per-gene dispersion estimates (shown by points) and the fitted mean-dispersion function (red line).

3. the exon comes from a gene that has more than one “testable” exon.

These testable exons are marked in the column testable of the feature data. Then, a CR estimate is computed for
each gene, and the obtained values are stored in the feature data column dispBeforeSharing.

> pasillaExons <- estimateDispersions(pasillaExons)

Note that for a full, genome-wide data set, execution of this function may take a while. To indicate progress, one dot
is printed on the console whenever 100 genes have been processed. If you have a machine with multiple cores, you may
want to use the nCores option to instruct the function to parallelize the task over several CPU cores. See Section 7
and the function’s help page for details.

Afterwards, the function fitDispersionFunction needs to be called, in which a dispersion-mean relation α(µ) =
α0 + α1/µ is fitted to the individual CR dispersion values (as stored in dispBeforeSharing). The fit coefficients are
stored in the slot dispFitCoefs and finally, for each exon, the maximum betweem the dispersion before sharing and
the fitted dispersion value is taken as the exon’s final dispersion value and stored in the dispersion slot.2 See our
paper [2] for the rationale behind this “sharing” scheme.

> pasillaExons <- fitDispersionFunction(pasillaExons)

> head(fData(pasillaExons)$dispBeforeSharing)

[1] 0.00930 0.00826 0.01669 0.01912 0.07736 NA

> pasillaExons@dispFitCoefs

(Intercept) I(1/means[good])

0.0429 2.0872

> head(fData(pasillaExons)$dispFitted)

[1] 0.0787 0.0631 0.0493 0.0511 0.0773 2.6909

As a fit diagnostic, we plot the per-exon dispersion estimates versus the mean normalised count.

> plotDispEsts( pasillaExons )

The plot (Figure 1) shows the estimates for all exons as dots and the fit as red line. The red line follows the trend
of the dots in the upper cluster of dots. The lower cluster stems from exons for which the sample noise happens to
fall below shot noise, i. e., their sample estimates of the dispersion is zero or close to zero and hence form another
cluster at the bottom. The fact that these two clusters look so well separated is to a large extent an artifact of the
logarithmic y-axis scaling. Inspect the fit and make sure that the regression line follows the trend of the points within
the upper cluster.

In Section 5, we will see how to incorporate further experimental or technical variables into the dispersion estimation.

2Especially when the dispersion estimates are very large, this fit can be difficult, and has occasionally caused the function to fail. In
these rare cases please contact the developers.

Analyzing RNA-seq data for differential exon usage with the DEXSeq package



4 Testing for differential exon usage

Having the dispersion estimates and the size factors, we can now test for differential exon usage. For each gene, we
fit a generalized linear model with the formula

sample + exon + condition * I(exon == exonID) (1)

and compare it to the smaller model (the null model)

sample + exon + condition. (2)

The deviances of both fits are compared using a χ2-distribution. Based on that, we will be able to decide whether the
null model (2) is sufficient to explain the data, or whether it can be rejected in favour of the alternative, model (1).

The function testForDEU performs such a test, one after another, for each exon in each gene and fills the pvalue

and padjust columns of the featureData slots of the ExonCountSet object with the results. Here, pvalue contains
the p values from the χ2 test, andnpadjust is the result of performing Benjmini-Hochberg adjustment for mutliple
testing on Robjectpvalue.

> pasillaExons <- testForDEU( pasillaExons )

> head( fData(pasillaExons)[, c( "pvalue", "padjust" ) ] )

pvalue padjust

FBgn0000256:E001 0.851 0.999

FBgn0000256:E002 0.560 0.999

FBgn0000256:E003 0.768 0.999

FBgn0000256:E004 0.680 0.999

FBgn0000256:E005 0.943 0.999

FBgn0000256:E006 NA NA

For some usages, we may also want to estimate fold changes. To this end, we call estimatelog2FoldChanges:

> pasillaExons <- estimatelog2FoldChanges( pasillaExons )

Now, we can get a table of all results with DEUresultTable.

> res1 <- DEUresultTable(pasillaExons)

> head( res1 )

geneID exonID dispersion pvalue padjust meanBase

FBgn0000256:E001 FBgn0000256 E001 0.0787 0.851 0.999 58.343

FBgn0000256:E002 FBgn0000256 E002 0.0631 0.560 0.999 103.333

FBgn0000256:E003 FBgn0000256 E003 0.0493 0.768 0.999 326.476

FBgn0000256:E004 FBgn0000256 E004 0.0511 0.680 0.999 253.654

FBgn0000256:E005 FBgn0000256 E005 0.0774 0.943 0.999 60.638

FBgn0000256:E006 FBgn0000256 E006 2.6909 NA NA 0.788

log2fold(untreated/treated)

FBgn0000256:E001 0.0235

FBgn0000256:E002 -0.0522

FBgn0000256:E003 0.0226

FBgn0000256:E004 0.0364

FBgn0000256:E005 -0.0130

FBgn0000256:E006 0.1290

Controlling false discovery rate (FDR) at 0.1 (10%), we can now ask how many counting bins show evidence of
differential exon usage:

> table ( res1$padjust < 0.1 )

FALSE TRUE

376 7

We may also ask how many genes are affected

Analyzing RNA-seq data for differential exon usage with the DEXSeq package



Figure 2: Mean expression versus log2 fold change plot. Significant hits (at padj<0.1) are colored in red.

> table ( tapply( res1$padjust < 0.1, geneIDs(pasillaExons), any ) )

FALSE TRUE

16 6

Remember that out example data set contains only a selection of genes. We have chosen these to contain interesting
cases; so this large fraction of affected genes is not typical.

To see how the power to detect differential exon usage depends on the number of reads that map to an exon, a
so-called MA plot is useful, which plots the logarithm of fold change versus average normalized count per exon and
marks by red colour the exons with adjusted p values of less than 0.1 (Figure 2). There is of course nothing special
about the number 0.1, and you can specify other thresholds in the call to plotMA. For the definition of the function
plotMA, see Section 2.1.

> plotMA(with(res1, data.frame(baseMean = meanBase,

+ log2FoldChange = `log2fold(untreated/treated)`,

+ padj = padjust)),

+ ylim=c(-4,4), cex=0.8)

5 Additional technical or experimental variables

In the previous section we performed the analysis of differential exon usage ignoring the information regarding the
library type of the samples. In this section, we show how to introduce this additional variable into the analysis. In this
case, type is a technical variable, but additional experimental variables can be introduced in the same manner.

> design(pasillaExons)

condition type

treated1fb treated single-read

treated2fb treated paired-end

treated3fb treated paired-end

untreated1fb untreated single-read

untreated2fb untreated single-read

untreated3fb untreated paired-end

untreated4fb untreated paired-end

First, we need to provide the function estimateDispersions with a model formula that makes it aware of the additional
factor. Note that if the function estimateDispersions is called with no value for its formula argument (as we did in
Section 3), the factor condition is considered by default.

> formuladispersion <- count ~ sample + ( condition + type ) * exon

> pasillaExons <- estimateDispersions( pasillaExons, formula = formuladispersion )

> pasillaExons <- fitDispersionFunction(pasillaExons)

Second, for the testing, we will also change the two formulae to take into account the library type.

Analyzing RNA-seq data for differential exon usage with the DEXSeq package
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Figure 3: Comparison of differential exon usage p values from analysis with (y-axis, res2) and without (x-axis, res1)
consideration of batch (library type) effects.

> formula0 <- count ~ sample + type * exon + condition

> formula1 <- count ~ sample + type * exon + condition * I(exon == exonID)

> pasillaExons <- testForDEU( pasillaExons, formula0=formula0, formula1=formula1 )

> res2 <- DEUresultTable( pasillaExons )

We can now compare with the previous result:

> table( res2$padjust < 0.1 )

FALSE TRUE

375 8

> table(res1$padjust < 0.1, res2$padjust < 0.1)

FALSE TRUE

FALSE 375 1

TRUE 0 7

> bottom = function(x) pmax(x, 1e-6)

> plot(bottom(res1$padjust), bottom(res2$padjust), log="xy", pch=20)

> abline(a=0,b=1, col="red3")

> abline(v=0.1, h=0.1, col="blue")

We can see from Figure 3 and the table above that with the type-aware analysis, detection power for differential exon
usage due to condition is improved.

6 Visualization

DEXSeq has a function to visualize the results of testForDEU.

> plotDEXSeq(pasillaExons, "FBgn0010909", cex.axis=1.2, cex=1.3, lwd=2, legend=TRUE)

The result is shown in Figure 4. This plot shows the fitted expression values of each of the exons. The function
plotDEXSeq takes at least two arguments, the pasillaExons object and the gene ID. The option legend=TRUE causes
a legend to be included. The three remaining arguments in the code chunk above are ordinary plotting parameters

Analyzing RNA-seq data for differential exon usage with the DEXSeq package
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Figure 4: The plot represents the expression estimates from a call to testForDEU. Shown in red is the exon that
showed significant differential exon usage.

which are simply handed over to R’s standard plotting functions. They are usually not needed and included here only
to improve appearance of the plots for this vignette. See the help page for par for details.

Optionally, one can also visualize the transcript models (Figure 5), which might be useful for putting differential
exon usage results into the context of isoform regulation.

> plotDEXSeq(pasillaExons, "FBgn0010909", displayTranscripts=TRUE,

+ cex.axis=1.2, cex=1.3, lwd=2, legend=TRUE)

Other useful options are to look at the count values from the individual samples, rather than at the model effect
estimates. For this display (option norCounts=TRUE), the counts are normalized by dividing them by the size factors
(Figure 6).

> plotDEXSeq(pasillaExons, "FBgn0010909", expression=FALSE, norCounts=TRUE,

+ cex.axis=1.2, cex=1.3, lwd=2, legend=TRUE)

As explaoined in detail in the paper, DEXSeq is designed to find difference in exon usage, i.e. differences in
expression that only some but not all exons show, while differences in the overall expression of a gene but not in the
isoform abundance ratios (and hence affecting all exons in the same way) will not be considered evidence of diffential
exon usage. Hence, it may be advantegeous to remove overall differences in expression also from the plots. Use the
option splicing=TRUE for this purpose.

> plotDEXSeq(pasillaExons, "FBgn0010909", expression=FALSE, splicing=TRUE,

+ cex.axis=1.2, cex=1.3, lwd=2, legend=TRUE )

To generate an easily browsable, detailed overview over all analysis results, the package provides an HTML report
generator, implemented in the function DEXSeqHTML. This function uses the package hwriter to create a result table
with links to plots for the significant results, allowing a more detailed exploration of the results. To see an example, visit
http://www.embl.de/~reyes/DEXSeqReport/testForDEU.html. The report shown there was generated using the
code:

> DEXSeqHTML( pasillaExons, FDR=0.1, color=c("#FF000080", "#0000FF80") )

Analyzing RNA-seq data for differential exon usage with the DEXSeq package
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Figure 5: As in Figure 4, but including the annotated transcript models.
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Figure 6: As in Figure 4, with normalized count values of each exon in each of the samples.
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Figure 7: The plot represents the splicing estimates, as in Figure 4, but taking away the overall gene expression.

7 Parallelization

DEXSeq analyses can be computationally heavy, especially with data sets that comprise a large number of samples,
or with genomes containing genes with large numbers of exons. While some steps of the analysis work on the whole
data set, the two parts that are most time consuming (the functions estimateDispersions and testForDEU) can be
parallelized by setting the parameter nCores. These functions will then distribute the ExonCountSet object into smaller
objects that are processed in parallel on different cores. This functionality uses the parallel package.

> data("pasillaExons", package="pasilla")

> library(parallel)

> pasillaExons <- estimateSizeFactors( pasillaExons )

> pasillaExons <- estimateDispersions( pasillaExons, nCores=3, quiet=TRUE)

> pasillaExons <- fitDispersionFunction( pasillaExons )

> pasillaExons <- testForDEU( pasillaExons, nCores=3)

8 Perform a standard differential exon usage analysis in one command

In the previous sections, we went through the analysis step by step. Once you are sufficiently confident about the work
flow for your data, its invocation can be streamlined by the wrapper function makeCompleteDEUAnalysis, which runs
the analysis shown above through a single function call.

> data("pasillaExons", package="pasilla")

> pasillaExons <- makeCompleteDEUAnalysis(

+ pasillaExons,

+ formulaDispersion=formuladispersion,

+ formula0=formula0,

+ formula1=formula1,

+ nCores=1)
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9 Creating ExonCountSet objects

9.1 From files produced by HTSeq

In this section, we describe how to create an ExonCountSet from an alignment of the RNA-seq reads to the genome,
in SAM format, and a file describing gene and transcript models in GTF format.

The first steps of this workflow involve two scripts for the Python library HTSeq [?]. These scripts are provided as
part of the R package DEXSeq, and are installed in the sub-directory textttpython scripts of the package’s installation
directory. To find the latter, use system.file.

> pkgDir = system.file(package="DEXSeq")

> pkgDir

[1] "/tmp/RtmpQWiG6E/Rinst26e0664dd30c/DEXSeq"

> list.files(pkgDir)

[1] "CITATION" "DESCRIPTION" "INDEX" "Meta" "NAMESPACE"

[6] "NEWS" "R" "doc" "help" "html"

[11] "python_scripts"

> list.files(file.path(pkgDir, "python_scripts"))

[1] "dexseq_count.py" "dexseq_prepare_annotation.py"

To use the scripts, you need to first install HTSeq as explained on the web site [?]. Run the scripts from the command
line. Both scripts display usage instructions when called without arguments.

The first script, dexseq_prepare_annotation.py, parses an annotation file in GTF format to define non-
overlapping exonic parts: for instance, consider a gene whose transcripts contain either of two exons whose genomic
regions overlap. In such a case, the script defines three exonic regions: two for the non-overlapping parts of each of
the two exons, and a third one for the overlapping part. The script produces as output a new file in GTF format.
The second script, dexseq_count.py, reads the GTF file produced by dexseq_prepare_annotation.py and an
alignment in SAM format and counts the number of reads falling in each of the defined exonic parts.

The files that were used in this way to create the pasillaGenes object are provided within the pasilla package:

> dir(system.file("extdata",package="pasilla"))

[1] "Dmel.BDGP5.25.62.DEXSeq.chr.gff" "geneIDsinsubset.txt"

[3] "pasilla_gene_counts.tsv" "treated1fb.txt"

[5] "treated2fb.txt" "treated3fb.txt"

[7] "untreated1fb.txt" "untreated2fb.txt"

[9] "untreated3fb.txt" "untreated4fb.txt"

The vignette3 of the package pasilla provides a complete transcript of these steps.
The DEXSeq function read.HTSeqCounts is then able to read the output from these scripts and returns an Exon-

CountSet object with the relevant information for differential exon usage analysis and visualization.

9.2 From elementary R data structures

Users can also provide their own data, contained in elementary R objects, directly to the function newExonCountSet in
order to create an ExonCountSet object. The package GenomicRanges in junction with the annotation packages avail-
able in Bioconductor give alternative options that allow users to create the objects necessary to make an ExonCountSet
object using only R. The minimum requirements are

1. a per-exon count matrix, with one row for every exon and one column for every sample,

2. a vector, matrix or data frame with information about the samples, and

3. two vectors of gene and exon identifiers that align with the rows of the count matrix.

3Data preprocessing and creation of the data objects pasillaGenes and pasillaExons
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> bare <- newExonCountSet(

+ countData = counts(pasillaExons),

+ design=design(pasillaExons),

+ geneIDs=geneIDs(pasillaExons),

+ exonIDs=exonIDs(pasillaExons))

With such a minimal object, it is possible to perform the analysis for differential exon usage, but the visualization
functions will not be so useful. The necessary information about exons start and end positions can be given as a
data frame to the newExonCountSet function, or can be added to the ExonCountSet object after its creation via the
featureData accessor. For more information, please see the manual page of newExonCountSet.

9.3 From GRanges, BamListFiles and transcriptDb objects

Alternatively, users can create their ExonCountSet objects from other Bioconductor data objects. The code for
implementating these functions was kindly contributed by Mike Love. For details, check the parathyroidSE package.
The workflow is the same as with the HTSeq python scripts. First we prepare the annotation file, in order to define
non-overlapping exonic parts. In order to control the exons that are used by many genes, the parameter aggregateGenes
allows the users to either ignore these exons and treat the genes separately, or merge the genes into a single ”aggregate
gene” and take into account these exons.

> library(GenomicFeatures)

> hse <- makeTranscriptDbFromBiomart(biomart="ensembl", dataset="hsapiens_gene_ensembl")

> exonicParts <- prepareAnnotationForDEXSeq( hse, aggregateGenes=TRUE )

The exonicParts object contains a GRanges object, that we can further use to count the number of read
fragments that overlap with our exonic bins. We do this using the function countReadsForDEXSeq.

> bamDir <- system.file("extdata",package="parathyroidSE",mustWork=TRUE)

> fls <- list.files(bamDir, pattern="bam$",full=TRUE)

> bamlst <- BamFileList(fls)

> SE <- countReadsForDEXSeq( exonicParts, bamlst )

Using the output of the functions prepareAnnotationForDEXSeq and countReadsForDEXSeq , we can call the
function buildExonCountSet in order to build our typical ExonCountSet object.

> ecs <- buildExonCountSet( SE, c("A", "A", "B"), exonicParts )

10 Lower-level functions

The following functions are not needed in the standard analysis work-flow, but may be useful for special purposes.

10.1 Single-gene functions

While the function counts returns the whole read count table, the function countTableForGene returns the count table
for a single gene:

> head(countTableForGene(pasillaExons,"FBgn0010909"))

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb untreated4fb

E001 1997 494 562 1150 2514 570 547

E002 122 112 180 69 203 156 142

E003 276 293 305 190 398 312 259

E004 420 200 182 230 446 183 185

E005 416 217 279 146 170 237 231

E006 486 357 471 190 337 418 364

Both function counts and function countTableForGene can also return normalized counts (i.e., counts divided by
the size factors). Use the option normalized=TRUE:

> head(countTableForGene(pasillaExons,"FBgn0010909", normalized=TRUE))
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treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb untreated4fb

E001 1494.8 618 609 1160.6 1603 680 659

E002 91.3 140 195 69.6 129 186 171

E003 206.6 366 331 191.7 254 372 312

E004 314.4 250 197 232.1 284 218 223

E005 311.4 271 302 147.3 108 283 278

E006 363.8 446 511 191.7 215 499 439

The function modelFrameForGene returns a model frame that can be used to fit a GLM for a single gene.

> mf <- modelFrameForGene( pasillaExons, "FBgn0010909" )

> head( mf )

sample exon sizeFactor condition type dispersion count

1 treated1fb E001 1.34 treated single-read 0.0166 1997

2 treated1fb E002 1.34 treated single-read 0.0562 122

3 treated1fb E003 1.34 treated single-read 0.0208 276

4 treated1fb E004 1.34 treated single-read 0.0221 420

5 treated1fb E005 1.34 treated single-read 0.0945 416

6 treated1fb E006 1.34 treated single-read 0.0405 486

This model frame can then be used, e.g., to estimate dispersions:

> mf <- estimateExonDispersionsForModelFrame( modelFrameForGene( pasillaExons, "FBgn0010909" ) )

Internally, the function estimateDispersions calls these two functions for each gene. It also stores the model
frames for later use by testForDEU.

A single-gene version of testForDEU is also provided, by testGeneForDEU:

> testGeneForDEU( pasillaExons, "FBgn0010909" )

deviance df pvalue

E001 1.24e-01 1 0.72447

E002 7.09e-01 1 0.39981

E003 2.79e+00 1 0.09512

E004 2.90e+00 1 0.08867

E005 5.13e+00 1 0.02353

E006 7.61e+00 1 0.00581

E007 1.14e+00 1 0.28482

E008 1.57e-01 1 0.69153

E009 4.97e-01 1 0.48091

E010 1.47e+02 1 0.00000

E011 5.50e-02 1 0.81463

E012 4.77e-01 1 0.48985

E013 2.38e+00 1 0.12298

E014 1.47e-07 1 0.99969

E015 5.36e-01 1 0.46389

E016 5.33e-01 1 0.46516

E017 2.36e+00 1 0.12463

E018 1.99e+00 1 0.15851

E019 9.57e-04 1 0.97532

E020 2.03e+00 1 0.15441

E021 4.39e-03 1 0.94716

E022 2.17e-01 1 0.64119

E023 7.30e-01 1 0.39288

See the help pages of these function for further options (e. g., to specify formulae).

10.2 Gene count table

The function geneCountTable computes a table of gene counts, which are obtained by summing the counts from all
exons with the same geneID. This might be useful for the detection of differential expression of genes, where the table
can be used as input e. g. for the packages DESeq or edgeR. This kind of table can also be produced with the package
GenomicRanges, e. g. function summarizeOverlaps.
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> head(geneCountTable(pasillaExons))

treated1fb treated2fb treated3fb untreated1fb untreated2fb untreated3fb

FBgn0000256 1482 857 966 1169 2626 1105

FBgn0000578 4386 2301 2827 3541 6381 3139

FBgn0002921 11305 7135 8001 7433 11980 5618

FBgn0003089 8 4 4 6 9 4

FBgn0010226 129 100 113 106 126 60

FBgn0010280 2693 1776 2187 2088 3963 2069

untreated4fb

FBgn0000256 1101

FBgn0000578 2725

FBgn0002921 5991

FBgn0003089 6

FBgn0010226 99

FBgn0010280 1981

Note that a read that mapped to several exons of a gene is counted for each of these exons by the dexseq_count.py

script. The table returned geneCountTable will hence cout the read several time for the gene, which may skew
downstream analyses in subtle ways. Hence, we recommend to use geneCountTable with care and use more sophisticated
counting schemes where appropriate.

10.3 Further accessors

The function geneIDs returns the gene ID column of the feature data as a character vector and the function exonIDs

return the exon ID column as a factor.

> head(geneIDs(pasillaExons))

FBgn0000256:E001 FBgn0000256:E002 FBgn0000256:E003 FBgn0000256:E004 FBgn0000256:E005

FBgn0000256 FBgn0000256 FBgn0000256 FBgn0000256 FBgn0000256

FBgn0000256:E006

FBgn0000256

14470 Levels: FBgn0000003 FBgn0000008 FBgn0000014 FBgn0000015 FBgn0000017 ... FBgn0261575

> head(exonIDs(pasillaExons))

FBgn0000256:E001 FBgn0000256:E002 FBgn0000256:E003 FBgn0000256:E004 FBgn0000256:E005

"E001" "E002" "E003" "E004" "E005"

FBgn0000256:E006

"E006"

These functions are useful for subsetting an ExonCountSet object.
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11 Session Information

> sessionInfo()

R version 3.0.0 (2013-04-03)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods base

other attached packages:

[1] pasilla_0.2.15 DESeq_1.12.0 lattice_0.20-15 locfit_1.5-9

[5] DEXSeq_1.6.0 Biobase_2.20.0 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.22.0 Biostrings_2.28.0 DBI_0.2-5 GenomicRanges_1.12.0

[5] IRanges_1.18.0 RColorBrewer_1.0-5 RCurl_1.95-4.1 RSQLite_0.11.2

[9] Rsamtools_1.12.0 XML_3.96-1.1 annotate_1.38.0 biomaRt_2.16.0

[13] bitops_1.0-5 genefilter_1.42.0 geneplotter_1.38.0 grid_3.0.0

[17] hwriter_1.3 splines_3.0.0 statmod_1.4.17 stats4_3.0.0

[21] stringr_0.6.2 survival_2.37-4 tools_3.0.0 xtable_1.7-1

[25] zlibbioc_1.6.0
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