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So far four audience members have tapped me on the shoulder to help me
understand fly chromosome structure ... glad to have your support!
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* eQTL: sensitivity analysis, removal of
extraneous variation

e dsQTL: genetics of chromatin accessibility —
unraveling eQTL mechanism?

* CCLE: reproducing an application of elasticnet
(combining lasso and ridge regression) to
tumor chemosensitivity
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Figure 1. Plausible sites of action for genetic determinants of mRNA
levels. Genetic variations influencing gene expression may reside within
the regulatory sequences, promoters, enhancers, splice sites, and second-

ary structure motifs of the target gene and so be genetically in cis (red
stars), or there may be variations in the molecular machinery that interact

with cis-regulatory sequences and so act genetically in trans (blue stars).



Opportunities for greedy tuning of
cis-eQTL search

radius of cis search
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OPINION

Tackling the widespread and
critical impact of batch effects
In high-throughput data

Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha,
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly
and Rafael A. Irizarry

Abstract | High-throughput technologies are widely used, for example to assay
genetic variants, gene and protein expression, and epigenetic modifications. One
often overlooked complication with such studies is batch effects, which occur
because measurements are affected by laboratory conditions, reagent lots and
personnel differences. This becomes a major problem when batch effects are
correlated with an outcome of interest and lead to incorrect conclusions. Using
both published studies and our own analyses, we argue that batch effects (as well
as other technical and biological artefacts) are widespread and critical to address.
We review experimental and computational approaches for doing so.

Many technologies used in biology — and hardware, along with highly trained per-

affected by both biological and non-biological
factors. Here we focus on batch effects, a
common and powerful source of variation
in high-throughput experiments.

Batch effects are sub-groups of measure-
ments that have qualitatively different
behaviour across conditions and are unre-
lated to the biological or scientific variables
in a study. For example, batch effects may
occur if a subset of experiments was run on
Monday and another set on Tuesday, if two
technicians were responsible for different
subsets of the experiments or if two different
lots of reagents, chips or instruments were
used. These effects are not exclusive to high-
throughput biology and genomics research’,
and batch effects also affect low-dimensional
molecular measurements, such as northern
blots and quantitative PCR. Although batch
effects are difficult or impossible to detect
in low-dimensional assays, high-throughput
technologies provide enough data to detect
and even remove them. However, if not
properly dealt with, these effects can have
a particularly strong and pervasive impact.
Specific examples have been documented
in published studies™ in which the biologi-



Table 1 | Batch effects seen for a range of high-throughput technologies

Study description*

Data set 1: gene
expression microarray,
Affymetrix (N_ = 22,283)

Data set 2: gene
expression, Affymetrix
(N, =4167)

Data set 3: mass
spectrometry (N =
15,154)

Data set 4: copy
number variation,
Affymetrix (N =
945,806)

Data set 5: copy
number variation,
Affymetrix (N =
945,806)

Data set 6: gene
expression, Affymetrix
(N =22,277)

Data set 7: gene
expression, Agilent
(N_=17,594)

Known variable used as a surrogate

Surrogate* Confounding Susceptible

Date
Date
Processing

group

Date

Date

Processing
group

Date

(%)

29.7

716

100

29.2

12.2

NA

NA

features

(%)'

50.5

73.7

517

99.5

83.8

83.8

62.8

Principal components used as a surrogate Association

Principal
components
rank of
surrogate
(correlation)”

1(0.570)

1(0.922)

2(0.344)

2(0.921)

1(0.553)

5(0.369)

2(0.248)

Principal
components
rank of
outcome
(correlation)'

1(0.649)

1(0.668)

2(0.344)

3(0.485)

1(0.137)

NA

NA

Susceptible
features
(%)t =

91.6

98.5

99.7

99.8

99.8

971

96.7

with
outcome

Significant
features

(%)
719

62.2

51.7

98.8

741

Refs
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17

18

18



nent will be highly correlated with cancer
status. Principal components capture both
biological and technical variability and, in
some cases, principal components can be
estimated after the biological variables have
been accounted for'". In this case, the prin-
cipal components primarily quantify the
effects of artefacts on the high-throughput
data. Principal components can be com-
pared to known variables, such as processing
group or time. If the principal components
do not correlate with these known variables,
there may be an alternative, unmeasured
source of batch effects in the data.

involving the sTCC study, we examined
the extent of batch effects for eight other
published or publicly available data sets
[TASLE 1) using the following approach.
First, we identified a surrogate for batch
effects (such as date or processing group)
for each data set. We then used simple linear
models to measure the level of confounding
between this surrogate and the study out-
come (for example, case or control) when
available. Note that the more confound-
ing there is, the more likely it is that batch
variability can be confused with biologi-
cal variability. We then summarized the

NATURE REVIEWS GENETICS



Upshots

 eQTLs are, in principle, identifiable by simple
linear modeling of relationship between
average expression and SNP genotype

* There is specificity to tissues, ...

* Works of Stegle, Storey, Leek et al. indicate
that removal of PCs and allied factors from
expression array archives is important for
improving sensitivity of eQTL detection



dsQTL identification

LETTER

d0i:10.1038/nature10808

DNase I sensitivity QTLs are a major determinant of
human expression variation

Jacob F. Degner"?*, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras', Daniel J. Gaffney"*, Joseph K. Pickrell’,
Sherryl De Leon®, Katelyn Michelini*, Noah Lewellen”, Gregory E. Crawford™®, Matthew Stephens™’, Yoav Gilad'

& Jonathan K. Pritchard™*

The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation’ °. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which
genetic variation leads to gene expression differences among
humans. We used DNasel sequencing to measure chromatin
accessibility in 70 Yoruba lymphoblastoid cell lines, for which

genome-wide genotypes and estimates of gene expression levels
are alen availahle®® We ahtained a tatal af 2 7 hillian unianelv

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNasel cleavage, often producing recognizable ‘footprints’ of
decreased DNase I sensitivity''* 7,

We collected DNase-seq data for 70 HapMap Yoruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes
were already available® *. We obtained an average of 39 million uniquely
mapped DNase-seq reads per sample, providing individual maps of
chromatin accessibility for each cell line (see Supplementary Informa-
tion for all analysis details). Our data allowed us to characterize the
distribution of DNasel cuts within individual hypersensitive sites at
ovtromely hich reenliitinn Ac synoected the NHSe cnincided ta a oreat
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Different approaches to dsQTL data
representation

* Chicago/GEO

— Filtered and normalized DHS assay results in 70 bed
files, indexed to hgl18: 1.4GB gzipped on GEO,
metadata not directly bound

— Imputed genotype data harbored separately as name,
loc, alleles, expected B allele count per indiv/SNP:
chrl = .3GB gzipped, 5 text bytes/SNP

* Bioconductor (dsQTLtools, not posted yet)

— .8GB compressed SummarizedExperiment for
DHS plus .08GB for 4 million imputed genotypes



SummarizedExperiment instance

> DHStop5 hgl9

class: SummarizedExperiment
dim: 1465442 70

exptData(2) : MIAME annotation
assays(l) : scores

rownames (1465442) : dhs_chrl 10402 dhs chrl 10502
dhs chr22 51228236 dhs_chr22 51234736

rowData metadata column names (0) :
NA18486 NA18498 . NA19239 NA19257
colData names (9) : . male isFounder

colnames (70) :

naid one

> assays (DHStop5 hgl9) $scores[1:5,1:3]

NA18486  NA18498  NA18499
dhs_chrl 10402 -0.8932210 -0.3633581 -0.4540041
dhs_chrl 10502 -0.1523477 -0.1704101 -1.0598971
dhs_chrl 13239 0.4360728 -0.1159094 1.2505193
dhs_chrl 13939 -0.5259945 -0.8212344 0.1145535
dhs chrl 16039 -0.9991160 0.2092481 0.3199874



> s1 = dsgNearGene (“"SLFN5")

> sl

dsgLook instance for SLEFN5 w/ radius 1000.
best DHS site: dhs chrl7 33571489.

R Under development (unstable) (2013-01-08 r61589),
x86_64-apple-darwini0.8.0

e Locale:
en_US.US-ASCII/en_US.US-ASCII/en_US.US-ASCII/C/en_US.US-ASCII/en_US.US-ASCII

e Base packages: base, datasets, graphics, grDevices, methods, parallel, splines,
stats, stats4, tools, utils

e Other packages: AnnotationDbi 1.21.9, Biobase 2.19.2, BiocGenerics 0.5.6,
BiocInstaller 1.9.6, Biostrings 2.27.8, codetools 0.2-8, DBI 0.2-5, digest 0.6.0,
dsQTLtools 0.0.5, GenomicFeatures 1.11.6, GenomicRanges 1.11.21,
GGBase 3.21.2, GGtools 4.7.17, GO.db 2.8.0, hmyriB36 0.99.16,
Homo.sapiens 1.0.0, IRanges 1.17.24, lattice 0.20-13, Matrix 1.0-10,
org.Hs.eg.db 2.8.0, OrganismDbi 1.1.9, Rsamtools 1.11.14, RSQLite 0.11.2,
snpStats 1.9.2, survival 2.37-2, TxDb.Hsapiens.UCSC.hg19.knownGene 2.8.0,
weaver 1.25.0

e Loaded via a namespace (and not attached): annotate 1.37.3, biomaRt 2.15.0,
bit 1.1-9, bitops 1.0-5, BSgenome 1.27.1, ff 2.2-10, genefilter 1.41.1, graph 1.37.4,
grid 3.0.0, RBGL 1.35.0, RCurl 1.95-3, rtracklayer 1.19.6,

VariantAnnotation 1.5.28, XML 3.95-0.1, xtable 1.7-0, zlibbioc 1.5.0



dhs_chr17_33571489

best dsQTL near SLFN5 rad. 50000
-log10 assoc p. = 7.028

A/A A/B B/B

rs883416




dsQTL scores
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AnnotationHub for Dnasel peaks

library(AnnotationHub)
ah = AnnotationHub ()
nah = names(ah)
ds = grep("dnase"”, nah, ignore.case=TRUE, value=TRUE)
> length{(ds)
[1] 686
> dsl[1:61]
[1]1 "goldenpath.dm2.database.bdtnpDnase_0.0.1.RData"

[2]1 "goldenpath.hglb.database.nhgriDnaseHs_0.0.1.RData"

[3]1 "goldenpath.hgl/.database.sangamoDnaseHs_0.0.1.RData"

[4] "goldenpath.hgl8.database.wgEncodelUwDnaseSeq_0.0.1.RData”

[5]1 "goldenpath.hgl9.encodeDCC.wgEncodeAwgDnaseUniform.wgEncodeAwgDnaseDuke8988t
UniPk.narrowPeak_0.0.1.RData"

[6]1 "goldenpath.hgl9.encodeDCC.wgEncodeAwgDnaseUniform.wgEncodeAwgDnaseDukeAosmc
UniPk .narrowPeak_0.0.1.RData"




Current metadata

> dstl = ah[[Lds[511]

Retrieving ’'goldenpath/hgl19/encodeDCC/uwgkncodefAugDnaseUniform/uwgEncodefuwgDnaseDu

ke8988tUniPk .narrowPeak_0.0.1.RData’

> args(ahinfo)

function (hub. path)

NULL

> ahinfo(ah., ds[51 )

From: EncodeDCC

Version: ENCODE Jan 2011 Freeze
Description: wgEncodeflugDnaseDuke8988tUniPk
Genus and Species: Homo sapiens

Genome: hgl9

BiocVYersion: 2.12, 2.13

Tags: 8988T1. wgEncodeflugDnaseUniPk. DnaseSeq. ENCODE Jan 2011 Freeze. wgEncodeE
H001103. Duke. 80fadeb/al4a/72add38203910d937f50. wgEncode. 1700000, wgEncodefiugD
(naseDuke8988tUniPk. None. narrowPeak. Peaks. wgEncodefwgDnaseUniform




Upshots

* Representation of Dnasel HS can take various
forms at various scales, tracks are nice but
archive is complicated

* DS-seq archive very substantial even as
filtered, but a SummarizedExperiment
container can manage it

e Searching for dsQTL with substantial
parallelism and small RAM footprint: Martin

and Val’s Streamer, scanVCF



Some machine learning with CCLE

LETTER

The Cancer Cell Line Encyclopedia enables predictive
modelling of anticancer drug sensitivity

Jordi Barretina'**#*, Giordano Caponigro**, Nicolas Stransky'*, Kavitha Venkatesan**, Adam A. Margolin'#*, Sungjoon Kim?,
Christopher J. Wilson®, Joseph Lehar?, Gregory V. Kryukov', Dmitriy Sonkin®, Anupama Reddy*, Manway Liu®, Lauren Murray’,
Michael F. Berger't, John E. Monahan®, Paula Morais', Jodi Meltzer?, Adam Korejwa', Judit Jané-Valbuena®?, Felipa A. Mapa*,
Joseph Thibault®, Eva Bric-Furlong®, Pichai Raman®, Aaron Shipway®, Ingo H. Engels®, Jill Cheng®, Guoying K. Yu®, Jianjun Yu®,
Peter Aspesi Jr?, Melanie de Silva®, Kalpana Jagtap®, Michael D. Jones*, Li Wang*, Charles Hatton®, Emanuele Palescandolo?,
Supriya Gupta', Scott Mahan', Carrie Sougnez’, Robert C. Onofrio’, Ted Liefeld’, Laura MacConaill®, Wendy Winckler’,

Michael Reich’, Nanxin Li®, Jill P. Mesirov', Stacey B. Gabriel', Gad Getz, Kristin Ardlie’, Vivien Chan®, Vic E. Myer?,

Barbara L. Weber?, Jeff Porter®, Markus Warmuth®, Peter Finan*, Jennifer L. Harris®, Matthew Meyerson"*3, Todd R. Golub’3:"+%,
Michael P. Morrissey**, William R. Sellers**, Robert Schlegel** & Levi A. Garraway'**

d0i:10.1038/nature11003

The systematic translation of cancer genomic data into knowledge of
tumour biology and therapeutic possibilities remains challenging.
Such efforts should be greatly aided by robust preclinical model
systems that reflect the genomic diversity of human cancers and for
which detailed genetic and pharmacological annotation is available'.

et A (e PN V2o N B X2, TN, o

known cancer genes were assessed by mass spectrometric genotyping’’
(Supplementary Table 2 and Supplementary Fig. 1). DNA copy number
was measured using high-density single nucleotide polymorphism arrays
(Affymetrix SNP 6.0; Supplementary Methods). Finally, messenger RNA
expression levels were obtained for each of the lines using Affymetrix
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Specification [edi]

The elastic net method which overcomes the limitations of the LASSO (least absolute shrinkage and selection
operator) method which uses a penalty function based on

181lx = 25=1 15351

Use of this penalty function has several limitations.!'! For example, in the "large p, small n problem" case, the
LASSO selects at most n variables before it saturates. Also if there is a group of highly correlated variables, then the
LASSO tends to select one variable from a group and ignore the others. To overcome these limitations, the elastic
net adds a quadratic part to the penalty (“.."3 ||2), which when used alone is ridge regression (known also as
Tikhonov regularization). The estimates from the elastic net method are defined by

3 = argmin(|ly — X 3> + 2|13]I* + Adl|8]]1)-
3
As a result, the elastic net method includes the LASSO and ridge regression: in other words, each of them is a
special case where \y = 1, Ay = 0or\; = 0, Ay = 1. Meanwhile, the naive version of elastic net
method finds an estimator in étwo-stage procedure : first for each fixed /\2 it finds the ridge regression coefficients,
and then does a LASSO type shrinkage. This kind of estimation incurs a double amount of shrinkage, which
introduces unnecessary extra bias and outcomes with bad prediction performance. To improve the prediction
performance, the authors rescale the coefficients of the naive version of elastic net by multiplying the estimated

coefficients by ( 14+ X ).[”
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Comments

* Qualitative effects of tuning the elastic net vs.

lasso ... organize with CV ... performance of a
single fit not so great

* Please consider models beyond “main effects”
— randompForests is a black-box approach that
accommodates one approach to variable
Interaction

 What about batch effects? Has the published
expression data been properly adjusted?
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Analysis Tools: Gene Set Enrichment Analysis (GSEA)

PAGE INFO A

Step3: Create
Sample Set

Step3: Create a New Sample Set

STEP INFO A

First class for comparative analyses - Close
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Quiz

 How should we organize data from integrative
experiments (expression, CNV, genotype, drug
sensitivity)?

* Ordering genes measured across tumor types
with respect to association between expression
and drug sensitivity: what methods are
preferred? Can we distinguish sensitive from
insensitive tumor types?

 How to test whether a given mutation
distinguishes sensitivities within a tumor class?




