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Visualisation

Wolfgang Huber


http://www.r-project.org/misc/acpclust.R
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Overview

Visualisation

1-dim. data: distributions
2-dim. data: scatterplots
3-dim. data: pseudo-3D displays

a few more than 2-dim: colours, drill-down, lattice, parallel
coordinates

High-dimensional data



Univariate data

Suppose you have samples of univariate measurements:

Set1: 0.81, 3.36, 6.84, 9.36, 2.91, 1.81, 5.07, 1.26, 7.89,
9.15, 3.30, 4.35, ..

Set2: 6.57, 5.92, 5.78, 6.63, 5.38, 5.98, 6.30, 6.34, 6.45,
6.57, 6.40, 5.89,

How do you visualize that?
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Univariate data

Suppose you have samples of univariate measurements:

Set1: 0.81, 3.36, 6.84, 9.36, 2.91, 1.81, 5.07, 1.26, 7.89,
9.15, 3.30, 4.35,

Set2: 6.57, 5.92, 5.78, 6.63, 5.38, 5.98, 6.30, 6.34, 6.45,
6.57, 6.40, 5.89,

How do you visualize that?
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Figure 7: Distributions of the log, intensities from the CLL dataset (see
Section 2) grouped by the number of cytosines (C) and guanines (G) among
the 25 nucleotides in each probe.



Density estimation

If X1, x2, ..., xnN~ f 1s an |ID sample of a random variable, then the kernel density

approximation of its probability density function is

JrlX) = .\'h 6’1 \ " h

where K is some kernel and h is the bandwidth (smoothing parameter). Quite often K
Is taken to be a standard Gaussian function with mean zero and variance 1:

K(x) — €

\"' i

R function density:

(i) disperses the mass of the empirical distribution over a regular
grid of >= 512 points,

(i) uses the fast Fourier transform to convolve this approximation
with a discretized version of the kernel,

(iii) uses linear approximation to evaluate the density at the
specified points.



Empirical Cumulative Distribution Function: ecdf

X = rnorm(1l2)
Fn = ecdf (x)
plot (Fn)

Fn(x) is the fraction of
data points with a
value < x.
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Discussion: boxplot, histogramme, density, ecdf

Boxplot makes sense for unimodal distributions

Histogram requires definition of bins (width, positions) and
can create visual artifacts esp. if the number of data points
is not large

Density requires the choice of bandwidth; plot tends to
obscure the sample size (i.e. the uncertainty of the
estimate)

ecdf does not have these problems; but is more abstract and
its interpretation requires some training. Good for reading
off quantiles and shifts in location in comparative plots;
OK for detecting differences in scale; less good for
detecting multimodality.



Impact of non-linear transformation on the shape of a density
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Horror Picture Show
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2D



spectral with add.contour=TRUE

function heatscatter

package LSD




Yearly sunspot numbers

1849-1924 Banking

Upper panel: aspect ratio is 1.0,
seems a reasonable default. But Yearly Sunspots

the graph fails to reveal an 1700 1750 1800 1850 1900 1950 2000
important property of the cycles. ] I

Bottom panel: aspect ratio chosen 150 -
by trellis algorithm banking to 45
degrees:

Sunspot cycles typically rise more
rapidly than they fall.

This behavior is pronounced for
high peaks, less pronounced for
medium peaks and disappears for
the lowest peaks.
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selected line segments on 45
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rgl package demo
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Trellis graphics and the
lattice package



Trellis graphics

= a framework for the visualization of multivariable data.
Its implementation for R is in the package lattice.

= Panels are laid out into rows, columns, and pages
(reminiscent of a garden trelliswork). On each panel of
the trellis, a subset of the data is graphed by a display
method such as a scatterplot, curve plot, boxplot, 3-D
wireframe, normal quantile plot, or dot plot. Each panel
shows the relationship of certain variables conditional
on the values of other variables.



Trellis

frame or structure of latticework used as a support for

growing vines or plants.



Data from an agricultural field
trial to study the crop barley.

At six sites in Minnesota, ten
varieties of barley were grown
in each of two years.

The data are the yields for all
combinations of site, variety,
and year, so there are 6 x 10 x 2
= 120 observations.

Each panel in the figure
displays the 20 yields at a
single site.
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= Data from an agricultural field
trial to study the crop barley.

= At six sites in Minnesota, ten
varieties of barley were grown
in each of two years.

= The data are the yields for all
combinations of site, variety,
and year, so there are 6 x 10 x 2
=120 observations.

= Each panel in the figure
displays the 20 yields at a
single site.

= Note the data for Morris -
reanalysis in the 1990s using
Trellis revealed that the years
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Trellis Graphics

= |Initial ideas in the 1993 book Visualizing Data by
Bill Cleveland - for up to two conditioning
variables.

= Extension to many explanatory variables required
a new approach to conditioning, and new display
technology for multipanel display.

= 1993-1996 Rick Becker and Bill Cleveland further
developed the framework.



Trellis Graphics

= Two primary variables are selected for display on
the common axes of the panels. Conditioning
variables are also selected. For example, suppose
there are four variables: blood pressure, weight,
sex, and race. Each panel might be a scatterplot of
blood pressure (primary variables) against weight
for one combination of race and sex (conditioning
variables).

= Shingle: numerical variable together with a set of
intervals. Allows to use it as a conditioning
variable. Intervals are allowed to overlap.



Tonga Trench earthquakes
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= Depth made into a
shingle and used as _
conditioning variable =

S
* R
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Levelplot (trivariate) for primaries

Cube Root Ozone (cube root ppb)
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Sepal Petal

Iris virginica Iris setosa Iris versicolor
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Three Varieties of Iris
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hiagh-dimensional data



Principal Component Analysis

= Orthogonal linear transformation of the data to a
new coordinate system such that the greatest
variance comes to lie on the first coordinate
(first principal component), the second greatest
variance on the second coordinate, and so on.

* Principal components = Eigenvectors of
covariance matrix

= Amount of contributed variance = Eigenvalues



Principal Component Analysis

= Orthogonal linear transformation of the data to a
new coordinate system such that the greatest
variance comes to lie on the first coordinate
(first principal component), the second greatest
variance on the second coordinate, and so on.




PC2

Principal component analysis
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Screeplot

Screeplot

Variances
N
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Comp.1
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Comp.22
Comp.23
Comp.24

fit = princomp (covmat=Harman74.cor)
sum (diag (Harman74.corS$cov))
## Trace = 24

s=screeplot (fit, npcs=24, main="Screeplot", las=2)



Non-linear low-dimensional embeddings of
high-dimensional data

= PCA is a linear method for finding a projection
P: R" —» RY(e.g. d=2),
= based on data x,,...,x, with coordinates in R"

= Generalisations:
— P non-linear
— k x k distance matrix instead of coordinates



Multidimensional scaling

= Starting again from k x k distance matrix D, arrange
points in a d-dimensional Euclidean space (e.g. d=2)
such that the distances between the points are as much
like the given distances as possible.

= Different flavors of MDS use different interpretations of
“like”.

= cmdscale: classical metric MDS uses a least-squares
definition of “like.” Its solution can be found by
computing the eigendecomposition of a suitably defined
matrix, the so-called doubly centered matrix of squared
distances. A nice property of classical MDS is that the
dimensions are nested, that is, the first two dimensions
of the d=2 solution are the same as the k=2 solution.



Multidimensional scaling

= isoMDS minimizes the loss-function ("stress™)

> (F(D,)-d,)

2 I

S = min 2
f monotonous 2 dU

I=]

= where fis a monotonic transformation and d; are the
distances between the points in the low-dimensional
space.

= another way of saying this is that the d;; are asked to
preserve the order of the input distances D,.



Multidimensional scaling

sammon minimizes the loss-function ("stress")

(D,.j—d,.jz
30

S =
I#]

where dj; are the distances between the points in the
low-dimensional space.
compared classical metric MDS:

— non-linear

— weighting of difference terms by D; — emphasizes preservation
of short distances
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Multidimensional scaling
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Software for drawing heatmaps

= heatmap in package stats

= heatmap.2 in package
gplots

= levelplot /
dendrogramGrob in

package latticeExtra
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Using colours

Different requirements for line colours than for
area colours

Avoid artefacts related to human perception
Many people are red-green colour blind

Lighter colours tend to make areas look larger
than darker colors, thus colors of equal
luminance should be chosen for graphics with
large filled areas or where perception of area is
important.



Light Emission Spectra

Emission
EBFP ECFP EGFP EYFP DsRed

Emission

W5 4% 45 S’ S5 6% 6IS 125

Wavelength (nm)

The spectral density of light waves is a function of wavelength A.
This function space is infinite dimensional.

Spectrometers measure such densities on a dense sampling grid.
But our eyes are not a spectrometer.



How human colour vision is
thought to have evolved

perception of light/dark by cone cells (monochrome;
sensitive to yellow and green wavelengths)

Evolution (pre-mammal) of a second class of cone cells
with sensitivity for blue-violet wavelengths. In
combination with 1, allows to see contrasts along a
"yellow/blue™ axis (usually associated with our notion of
warm/cold colors)

Primates, 30 Ma ago: specification of the yellow/green
cones into two classes: one more sensitive to green, one
more to red, allowing to see contrasts in that part of the
spectrum (helpful for assessing the ripeness of fruit)

Although the space of all possible wavelength spectra is
infinite-dimensional, we perceive them as a 3-dimensional
signal



How human colour vision is
thoinaht to have evolved
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infinite-dimensional, we perceive them as a 3-dimensional
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Nature 323,623 - 625 (16 October 1926), dor10.1038/3236234)

Polymorphism of the long-wavelength cone in normal human colour
vision
JAY NEITZ & GERALD H. JACOBS

Departmaent of Paychology, Univenity of Califossia, Santa Barbara, Califomia 03108, USA

Colour vision is based on the presence of multiple classes of cone each of wluch contams a different type of
pholopigmeml. Colowr matcling tests have long revealed that the normal hwnan has three cone types. Results
from these tests have also been used to provide estunates of cone spectral sensitivities>. There are significant

vanations m colowr matches made by mdividuals whose colour vision is classified as normal® 8. Some of this is
due to mdividual differences i preretmal absorption and photopigment density, but some is also believed to
anse because there is vanation m the spectral positionung of the cone pigments among those who have normal
colowr vision. We have used a sensitive colowr matclung test to examine the magnitude and nature of this
mdividual vanation and here report evidence for the existence of two different long-wavelength cone
mechamsms i normal hunans. The different pattens of colouwr matches made by male and female subjects
mdicate these two mechamsms are mhented as an X-chromosome hinked mrait.
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RGB color space

= Motivated by computer screen hardware

Blue

- Red




Color palettes based on the extremes
of the RGB cube hurt the eyes

3 2

> pie(rep(1,8), col=1:8)



HSV color space
Hue-Saturation-Value (Smith 1978)

V . . black (one point)

min-*

V ... aplanar area of fully saturated wikipedia

max-

colours, with white in the centre



HSV color space
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(almost) 1:1 mapping between RGB and HSV space

Conversion from RGB to HSL or HSV
Letr, g, b < [0,1] be the red, green, and blue coordinates, respectively, of a color in RGB space.
Let max be the greatest of r, g, and b, and min the least.

To find the hue angle h < [0, 360] for either HSL or HSV space, compute:

(() if max = min
(60° x —2=% _ 4 0°) mod 360°, if max=r

h - max - min

60° x m’: — 4 120°, if max =g
[ 60° X ——Lr 4 240°, if max=»5b
To find saturation and lightness s, / « [0,1] for HSL space, compute:
(0 if max = min . )
P £ ::::: ‘:::::: i m.uqt min‘ lfl S 'l‘_ Wlklpedla
1HEAX — i BIAX — AN l[l - _l'_

\ 2~ {(max + min) 2~2
[ = }(max + min)

The value of h is generally normalized to lie between 0 and 360°, and h = 0 is used when max = min (that is, for grays) though the hue
has no geometric meaning there, where the saturation s is zero. Similarly, the choice of 0 as the value for s when /is equaltoQor 1is
arbitrary.

HSL and HSV have the same definition of hue, but the other components differ. The values for s and v of an HSV color are defined as
follows:

{U. if max =0
8 ==

faax -~ min = nuu‘ otherwise
fax max

v max
The range of HSV and HSL vectors is a cube in the cartesian coordinate system; but since hue is really a cyclic property, with a cut at

red, visualizations of these spaces invariably involve hue circles;” cylindrical and conical (bi-conical for HSL) depictions are most
popular; Spherical depictions are also possible.



perceptual colour spaces

= However, human perception of colour corresponds neither
to RGB nor HSV coordinates, and neither to the
physiological axes light-dark, yellow-blue, red-green

= Rather to polar coordinates in the colour plane (yellow/blue
vs. green/red) plus a third light/dark axis. Perceptually-
based colour spaces try to capture these perceptual axes:

— 1. hue (dominant wavelength)
— 2. chroma (colorfulness, intensity of color as compared

to gray)
— 3. luminance (brightness, amount of gray)



HCL colour coordinates: L is a more useful parameter of brightness
HSV
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Zeileis and Hornik




CIELUV and HCL

= Commission Internationale de I’ Eclairage (CIE) in 1931, on
the basis of extensive colour matching experiments with
people, defined a “standard observer” who represents a
typical human colour response (response of the three light
cones + their processing in the brain) to a triplet (x,y,z) of
primary light sources (in principle, this could be
monochromatic R, G, B; but CIE choose something a bit
more subtle)

= 1976: CIELUV and CIELAB are perceptually based
coordinates of colour space.

= CIELUV (L, u, v)-coordinates is prefered by those who work
with emissive colour technologies (such as computer
displays) and CIELAB by those working with dyes and

pigments (such as in the printing and textile industries)
Thaka 2003



HCL colours

= (u,v) =chroma * (cos h, sin h)

L the same as in CIELUV, (C,H)
are simply polar coordinates for
(u,v)

1. hue (dominant wavelength)

2. chroma (colorfulness, intensity
of color as compared to gray)

3. luminance (brightness, amount
of gray)



Figure 2: Circles in HCL colorspace. a: circles in HCL space at constant
L = 75, with the angular coordinate H varying from 0 to 360 and the radial
coordinate C = 0,10,...,60. b: constant C = 50, and L = 10, 20,...,90.
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Software
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RColorBrewer and vcd packages
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Some useful functions for
working with colours

RColorBrewer
display.brewer.all show all palettes

brewer .pal choose one particular palette

RColorBrewer
colorRamp, colorRampPalette interpolate

vcd
sequential hcl, diverge hcl, rainbow hcl palettes

... and avoid R's default colours
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Value | Munsell Color System

Albert Munsell LR

(1858-1918) divided the =

circle of hues into 5 chr/omagJ i 1°Y llow-Red
main hues — R, Y, G, B, " Red-Purple Red ~— o 1 e\a.-_‘uow

P (red, yellow, green,
blue and purple).

Value, Chroma: ranges B 5 Green-Yellow
divided into 10 equal
steps.

E.g. R4/5 = hue of red purple-Blue  BlUe
with a value of 4 and a Blue-Green
chroma of 5. L



Munsell Colour System

Albert Munsell
(1858-1918) divided the
circle of hues into 5 main
hues — R, Y, G, B, P (red,
yellow, green, blue and
purple).

Value, Chroma: ranges
divided into 10 equal
steps.

E.g. R4/5 = hue of red
with a value of 4 and a
chroma of 5.

A BALANCED COLOR SPHERE



Colour Harmony
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Balance

* The intensity of colour which should be used is
dependent on the area that that colour is to
occupy. Small areas need to be much more
colourful than larger ones.

= Choose colours centered on a mid-range or
neutral value, or;

= Choose colours at equally spaced points along
smooth paths through (perceptually uniform)
colour space: equal luminance and chroma and
correspond to set of evenly spaced hues.



