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Karl Popper (1902-1994)

Logical asymmetry between verification and falsifiability.

No number of positive outcomes at the level of
experimental testing can confirm a scientific theory, but a
single counterexample is logically decisive: it shows the
theory is false




Hypothesis Testing

General idea: Set up a “null” hypotheses

Ho: a model of reality which lets us make specific
predictions of how the data should look like.

If we can show that the probability of getting the actually
observed data (if Ho is true) is small, then we can ‘reject’
Ho and conclude that something else is likely to be true.

Examples of null hypotheses:
*The coin is fair
*The new drug is no better (or worse) than a placebo

*The observed CellTitreGlo signal is no different from that
of negative controls




Example Hypothesis Testing

Toss a coin a given number of times =
If the coin is fair, then heads should appear half of the
time (roughly).

But what is “roughly”? We use combinatorics / probability
theory to quantify this.

For example, in 12 tosses with success rate p, the
probability of seeing exactly 8 heads is

(182>p8 (1—p)*




Binomial Distribution

Ho here: p = 0.5. Distribution of number of heads:

Distribution of heasds for 12 Tosses

an—j é 1 : : Ixﬂ—zz
Possible Values

P(Heads <2)=0.0193 P(Heads 210) =0.0193




Significance Level

If H, is true and the coin is fair (p=0.5), it is unprobable to
observe extreme events such as more than 9 heads

0.0193 =P(Heads 210 | H, ) = “p-value” (one-sided)

If we observe 10 heads in a trial the null hypotheses
is likely to be false.

An often used (but entirely arbitray) cutoff is 0.05
(“significance level o"): if p<a, we reject H,

TWwWO views:
Strength of evidence for a certain (negative) statement
Rational decision support




Statistical Testing Workflow

1. Set up hypothesis H, (that you want to reject)

2. Find a test statistic T that should be sensitive to
(interesting) deviations from H,

3. Figure out the null distribution of T, if H, holds

4. Compute the actual value of T for the data at
hand

5. Compute p-value = the probability of seeing that
value, or more extreme, in the null distribution.

6. Test Decision: Rejection of H, -yes/no ?




Errors in hypothesis testing

Decision

Ho false

not rejected
(‘negative’)

True negative
(specificity)

False Negative
Type Il error

B

rejected
(‘positive’)

False Positive

Type | error
a

True Positive
(sensitivity)




False positive rate and false
discovery rate

FPR: fraction of FP among
all genes (etc.) tested
FDR: fraction of FP among
hits called

Example: i
20,000 genes, 100 hits, 10 of

them wrong.

FPR: 0.05%
FDR: 10%




One sample t-test

t-statistic (1908, William Sealy
Gosset, pen-name “Student”)

One sample t-test: compare
to a fixed value Lo

Without n: z-score

With n: t-statistic: If data are
normal, its null distribution
can be computed: t-
distribution with a parameter
that is called “degrees of
freedom” equal to n-1




One sample t-test example

Consider the following 10 data points:
-0.01, 0.65,-0.17,1.77,0.76, -0.16, 0.88, 1.09, 0.96, 0.25

We are wondering if these values come from a distribution
with a true mean of 0: one sample t-test

The 10 data points have a mean of 0.60 and a standard
deviation of 0.62.

From that, we calculate the t-statistic:

t=0.60/0.62*1072=3.0




t-test

If Ho is correct, t follows a known distribution: t-distribution

The shape of the t-distribution depends on the number of
observations: if the average is made of n observations, if
follows the t-distribution with n-1 degrees of freedom (Tn-1).

If nis large, Tn-1 is close to a normal distribution

If nis small, Tnh-1 is more spread out than a normal
distribution.

This penalty takes into account that the data-based
estimate of the standard deviation can underestimate* the
true value.

(*in principle: also overestimate)




p-value and test decision

10 observations @ compare observed t-statistic to the t-
distribution with 9 degrees of freedom

o

t
p-value: P(|t| >=3.01)=0.014




Avoid fallacy

The p-value is the probability that the observed data
could happen, under the condition that the null
hypothesis is true.

It it not the probability that the null hypothesis is
true.

Absence of evidence + evidence of absence




One-sided vs two-sided test

One-sided
e.g. Ha: p>0

Two-sided 2.5%

e.g. Ha: u=0 ;4




Two samples t-test

Do two different samples have the same mean ?

_F-F
SE

[

y and X are the average of the observations in both
populations

SE is the standard error for the difference

If Ho is correct, test statistic follows a t-distribution with

n+m-2 degrees of freedom (n, m the number of observations
in each sample).




Comments and pitfalls

The derivation of the t-distribution assumes that the

observations are independent and that they follow a
normal distribution.

Some deviations from Normality, e.g. heavier tails,
are actually rarely a problem for the t-test,
unsymmetric (skewed) distributions are =

use Wilcoxon tests based on ranks!

If the data are dependent, then p-values will likely

be totally wrong (e.g., for positive correlation, too
optimistic).




different data distributions - independent case

Normal(0,1) Uniform(-1,1) Gamma(2, 1)
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different data distributions — correlated case

Uniform(-1,1) Gamma(2, 1)
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Frequency

Batch effects or “latent variables”

Histogram of rt1$p.value

Frequency

Histogram of rt2$p.value
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matrix(rnorm(n*m), nrow=n, ncol=m)
factor(c(rep(0, 10), rep(1l, 10)))

rowttests (x, fac)

:15] = x[, 6:15]+1

rowttests (x, fac)

sva package; Leek JT, Storey JD.
Capturing heterogeneity in gene
expression studies by surrogate
variable analysis. PLoS Genet. 2007

Stegle O, Parts L, Durbin R, Winn J. A
Bayesian framework to account for
complex non-genetic factors in gene
expression levels greatly increases
power in eQTL studies. PLoS Comput
Biol. 2010.



http://www.ncbi.nlm.nih.gov/pubmed/17907809
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Stegle%20O%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Parts%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Durbin%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Winn%20J%22%5BAuthor%5D

t-test and wilcoxon test in R

t.test(x, y, alternative, paired, var.equal)

x,y: Data (only x needs to be specified for one-group
test, specify target mu instead)

paired: paired (e.g. repeated measurements on the
same subjects) or unpaired

var.equal: Can the variances in the two groups assumed

to be equal?

alternative: one- or two-sided test?
wilcox.test(x, y, alternative, paired, exact)

... just like the t-test,

exact: shall computations be performed using
permutations? (slow for large samples)
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The Multiple Testing Problem

When performing a large number of tests, the type | error
is inflated: for x=0.05 and performing n tests, the
probability of no false positive result is:

0.95-095-...-0.95 << 0.95

n—times

= The larger the number of tests performed, the higher

the probability of a false rejection!




Multiple Testing Examples

Many data analysis approaches in genomics rely on item-
by-item (i.e. multiple) testing:

Microarray or RNA-Seq expression profiles of “normal” vs
“perturbed” samples: gene-by-gene

ChlIP-chip: locus-by-locus
RNAi and chemical compound screens
Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait




Experiment-wide type | error rates

Not
rejected Rejected Total

True null U \Y

mg
hypotheses

False null T S

my
hypotheses

Total m-R R m

Family-wise error rate: P(V > 0), the probability of one or more false
positives. For large m,, this is difficult to keep small.

False discovery rate: E[ V/ max{R,1} ], the expected fraction of false
positives among all discoveries.




FWER: The Bonferroni correction

Suppose we conduct a hypothesis test for each gene ¢ = 1.
producing

an observed test statistic: 7,

an unadjusted p—value: p,.
Bonferroni adjusted p—values:

Pg = 111111(71’11)g. 1).

Selecting all genes with p, < a controls the FWER at level a, that is,
Pr(V >0) < a.




Controlling the FDR (Benjamini/Hochberg)

O FDR: the expected proportion of false positives among the significant
genes.

O Ordered unadjusted p—values: p,, <p,, < ... <p, .

O To control FDR = E(V/R) at level a, let

7% = max{j i Pr; < (7/m)a}.

Reject the hypotheses H,. for j =1

O Is valid for independent test statistics and for some types of
dependence.




Diagnostic plot: the histogram of p-values
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Observed p-values are a mix of samples from

¢ a uniform distribution (from true nulls) and

¢ from distributions concentrated at 0 (from true
alternatives)




Benjamini Hochberg multiple testing adjustment

slope: a/ #genes

| | | l
500 1000 1500 2000

iIndex



Benjamini Hochberg multiple testing adjustment

i <- length(p):1

o <- order (p, decreasing = TRUE)
ro <- order (o)

pmin(l, cummin(n/i * p[o])) [ro]

500 1000 1500 2000

iIndex



Schweder and Spjotvoll p-value plot
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Schweder T, Spjoetvoll E (1982)
Plots of P-values to evaluate
many tests simultaneously.
Biometrika 69:493-502.

For a series of hypothesis tests
H4...Hm with p-values pi, plot

(1—pi, N(pi)) foralli

where N(p) is the number of p-
values greater than p.

Red line: (1—pi,(1—p)*m)

(1—p)*m = expected number of
p-values greater than p




DESeqg2 lab - parathyroid dataset
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DESeqg2 lab - parathyroid dataset

Histogram of res$pvalue
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DESeqg2 lab - parathyroid dataset

Histogram of res$pvalue
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Independent filtering

From the set of all rows in the table,

first filter out those that seem to report negligible signal,

then formally test for differential expression on the rest.

Literature:

von Heydebreck, Huber, Gentleman (2004)

Chiaretti et al., Clinical Cancer Research (2005)

McClintick and Edenberg (BMC Bioinf. 2006) and references therein
Hackstadt and Hess (BMC Bioinf. 2009)

Bourgon et al. (PNAS 2010)

Many others.




Increased detection rates

Stage 1 filter: sum of counts, across samples, for each row, and
remove the fraction 6 that are smallest
Stage 2: standard NB-GLM test

2}
c
o
=
o
2,
)
o
—“—
o
o
Q@
O
S
3
c

| ! | |
0.0 0.1 0.2 0.3 0.4 0.5

FDR cutoff (Benjamini & Hochberg adjusted p-value)



Increased power?

Increased detection rate implies increased power
only if we are still controlling type | errors at the same level as before.
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Increased power?

Increased detection rate implies increased power

only if we are still controlling type | errors at the same level as before.

o

Concern:

* Since we use a data-driven criterion in
stage 1, but do type | error consideration
only on number of genes In stage 2, aren’t
we ‘cheating’?

Informal justification:
Filter does not use covariate information

I I I I
0.0 0.1 0.2 0.3 0.4 0.5

FDR cutoff (Benjamini & Hochberg adjusted p-value)



What do we need for type | error control?

l. For each individual (per gene) test statistic, we need to know its

correct null distribution
ll. To the extent that the multiple testing procedure relies on a certain
(in)dependence structure between the different test statistics, our test

statistics need to comply.

l.: one (though not the only) solution is to make sure that by filtering, the
null distribution is not affected - that it is the same before and after
filtering

Il.: See later




Result: independence of filter and test statistics under
the null hypothesis

For genes for which the null hypothesis is true (X, ,..., X, exchangeable),
f (filter) and g (test) are statistically independent in all of the following cases:

e NB-test (DESeq(2)):
f: overall count sum (or mean)

e Normally distributed data (e.g. microarray data after rma or vsn):
f: overall variance, overall mean
g: standard two-sample t-statistic, or any test statistic which is scale and
location invariant.

e Non-parametrically:
f: any function that does not depend on the
order of the arguments. E.g. overall variance, 1QR.
g: the Wilcoxon rank sum test statistic.

Also in the multi-class context: ANOVA, Kruskal-Wallis.




Derivation

Non-parametric case:
Straightforward decomposition of the joint probability
into product of probabilities using the assumptions.

Normal case:
Use the spherical symmetry of the joint distribution, p-

dimensional N(0, 152), and of the overall variance;
and the scale and location invariance of t.

This case is also implied by Basu's theorem

(V complete sufficient for family of probability
measures P, T ancillary = T, V independent)




What do we need for type | error control?

The distribution of the test statistic under the null.

|. Marginal: for each individual (per gene) test statistic

Il. Joint: some multiple testing procedures relies on certain
independence properties of the joint distribution

|.: one solution is to make sure that by filtering, the marginal nuli

distribution is not affected - that it is the same before and after filtering
(possible alternative: empirical nulls)




Multiple testing procedures and dependence

1. Methods that work on the p-values only and allow general dependence
structure: Bonferroni, Bonferroni-Holm (FWER), Benjamini-Yekutieli
(FDR)

2. Those that work on the data matrix itself, and use permutations to
estimate null distributions of relevant quantities (using the empirical
correlation structure): Westfall-Young (FWER)

3. Those that work on the p-values only, and make dependence-related
assumptions: Benjamini-Hochberg (FDR), g-value (FDR)




Diagnostics
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Conclusion

Independent filtering can substantially increase your power at same
type | error.




Conclusion

Independent filtering can substantially increase your power at same
type | error.




References

Bourgon R., Gentleman R. and Huber W. Independent filtering
increases detection power for high-throughput experiments,
PNAS (2010)

Bioconductor package genefilter vignette: Diagnostics for
independent filtering

DESeq2 vignette
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Derivation (non-parametric case)

P(fEA gEB) A, B: measureable sets
f. stage 1, g: stage 2

= [34(f(X)) 8,(g(X)) P,
J, exchangeability

=% S [8,(F or (X)) d5(g0(X)) P

f's permutation invariance

- [3.(F(X)) (% S 85(g o(X) )dPX

distribution of g generated

- _an’A(f(X)) Plg&B)dPy by permutations

- P(fE A)-P(g €B)




Positive Regression Dependency

On the subset of true null hypotheses:
If the test statistics are X = (X,,X,,...,X):

For any increasing set D (the product of rays, each infinite on the
right), and H true, require that

Prob(Xin D | X.=s ) is increasing in s, for all i.

Important Examples
Multivariate Normal with positive correlation

Absolute Studentized independent normal




