
Differential analysis of RNA-Seq data at the gene level using the DESeq2

package

Michael Love, Simon Anders, Wolfgang Huber

November 19, 2013

Contents

1 Introduction 1

2 Input data 2
2.1 Experiment data . 2
2.2 Collapsing technical replicates . 4

3 Running the DESeq2 pipeline 8
3.1 Preparing the data object for the analysis of interest . 8
3.2 Running the pipeline . 8
3.3 Inspecting the results table . 9
3.4 Multiple testing . 10
3.5 Independent filtering . 11
3.6 Diagnostic plots . 12

4 Adding gene names 15

5 Downstream analyses 16
5.1 Gene set enrichment analysis . 16
5.2 Nearest peak to a differentially expressed gene . 19

6 Working with rlog-transformed data 22
6.1 The rlog transform . 22
6.2 Sample distances . 24
6.3 Gene clustering . 26

7 Advanced Questions 27

8 Solutions 28

9 Session Info 30

1 Introduction

In this lab, you will learn how to analyse a count table, such as arising from a summarised RNA-Seq experiment, for
differentially expressed genes.

1

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 2

2 Input data

2.1 Experiment data

We read in a prepared SummarizedExperiment, which was generated from publicly available data from the article by
Felix Haglund et al., “Evidence of a Functional Estrogen Receptor in Parathyroid Adenomas”, J Clin Endocrin Metab,
Sep 2012, http://www.ncbi.nlm.nih.gov/pubmed/23024189. Details on the generation of this object can be found
in the vignette for the parathyroidSE package, http://bioconductor.org/packages/release/data/experiment/
html/parathyroidSE.html.

The purpose of the experiment was to investigate the role of the estrogen receptor in parathyroid tumors. The
investigators derived primary cultures of parathyroid adenoma cells from 4 patients. These primary cultures were treated
with diarylpropionitrile (DPN), an estrogen receptor β agonist, or with 4-hydroxytamoxifen (OHT). RNA was extracted
at 24 hours and 48 hours from cultures under treatment and control. The blocked design of the experiment allows for
statistical analysis of the treatment effects while controlling for patient-to-patient variation.

We first load the DESeq2 package and the data package parathyroidSE , which contains the example data set.

library("DESeq2")

Loading required package: GenomicRanges

Loading required package: BiocGenerics

Loading required package: parallel

##

Attaching package: ’BiocGenerics’

##

The following objects are masked from ’package:parallel’:

##

clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,

clusterExport, clusterMap, parApply, parCapply, parLapply,

parLapplyLB, parRapply, parSapply, parSapplyLB

##

The following object is masked from ’package:stats’:

##

xtabs

##

The following objects are masked from ’package:base’:

##

anyDuplicated, append, as.data.frame, as.vector, cbind, colnames,

duplicated, eval, evalq, Filter, Find, get, intersect, is.unsorted,

lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int,

pmin, pmin.int, Position, rank, rbind, Reduce, rep.int, rownames,

sapply, setdiff, sort, table, tapply, union, unique, unlist

##

Loading required package: IRanges

Loading required package: XVector

Loading required package: Rcpp

Loading required package: RcppArmadillo

library("parathyroidSE")

The data command loads a data object.

data("parathyroidGenesSE")

The information in a SummarizedExperiment object can be accessed with accessor functions. For example, to see the
actual data, i.e., here, the read counts, we use the assay function. (The head function restricts the output to the first
few lines.)

http://www.ncbi.nlm.nih.gov/pubmed/23024189
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 3

head(assay(parathyroidGenesSE))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

ENSG00000000003 792 1064 444 953 519 855 413 365 278 1173 463 316

ENSG00000000005 4 1 2 3 3 1 0 1 0 0 0 0

ENSG00000000419 294 282 164 263 179 217 277 204 189 601 257 183

ENSG00000000457 156 184 93 145 75 122 228 171 116 422 182 122

ENSG00000000460 396 207 210 212 221 173 611 199 426 1391 286 417

ENSG00000000938 3 8 2 5 0 4 13 22 3 38 13 10

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22]

ENSG00000000003 987 424 305 391 586 714 957 346 433 402

ENSG00000000005 0 0 0 0 0 0 1 0 0 0

ENSG00000000419 588 275 263 281 406 568 764 288 259 250

ENSG00000000457 441 211 131 115 196 266 347 133 168 148

ENSG00000000460 1452 238 188 102 389 294 778 162 85 339

ENSG00000000938 26 13 7 3 10 18 15 7 8 7

[,23] [,24] [,25] [,26] [,27]

ENSG00000000003 277 511 366 271 492

ENSG00000000005 0 0 0 0 0

ENSG00000000419 147 271 227 197 363

ENSG00000000457 83 184 136 118 195

ENSG00000000460 75 154 314 117 233

ENSG00000000938 5 13 8 7 8

In this count table, each row represents an Ensembl gene, each column a sequenced RNA library, and the values give
the raw numbers of sequencing reads that were mapped to the respective gene in each library.

Question 1: For how many genes are there counts in this table?
We also have metadata on each of the samples (the “columns” of the count table):

colData(parathyroidGenesSE)

DataFrame with 27 rows and 8 columns

run experiment patient treatment time submission study

<character> <factor> <factor> <factor> <factor> <factor> <factor>

1 SRR479052 SRX140503 1 Control 24h SRA051611 SRP012167

2 SRR479053 SRX140504 1 Control 48h SRA051611 SRP012167

3 SRR479054 SRX140505 1 DPN 24h SRA051611 SRP012167

4 SRR479055 SRX140506 1 DPN 48h SRA051611 SRP012167

5 SRR479056 SRX140507 1 OHT 24h SRA051611 SRP012167

...

23 SRR479074 SRX140523 4 DPN 48h SRA051611 SRP012167

24 SRR479075 SRX140523 4 DPN 48h SRA051611 SRP012167

25 SRR479076 SRX140524 4 OHT 24h SRA051611 SRP012167

26 SRR479077 SRX140525 4 OHT 48h SRA051611 SRP012167

27 SRR479078 SRX140525 4 OHT 48h SRA051611 SRP012167

sample

<factor>

1 SRS308865

2 SRS308866

3 SRS308867

4 SRS308868

5 SRS308869

... ...

23 SRS308885

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 4

24 SRS308885

25 SRS308886

26 SRS308887

27 SRS308887

Question 2: What are the metadata for the genes (the “rows” of the count table)?

2.2 Collapsing technical replicates

There are a number of samples which were sequenced in multiple runs. For example, sample SRS308873 was sequenced
twice. To see, we list the respective columns of the colData. (The use of as.data.frame forces R to show us the full
list, not just the beginning and the end as before.)

as.data.frame(colData(parathyroidGenesSE)[,c("sample","patient","treatment","time")])

sample patient treatment time

1 SRS308865 1 Control 24h

2 SRS308866 1 Control 48h

3 SRS308867 1 DPN 24h

4 SRS308868 1 DPN 48h

5 SRS308869 1 OHT 24h

6 SRS308870 1 OHT 48h

7 SRS308871 2 Control 24h

8 SRS308872 2 Control 48h

9 SRS308873 2 DPN 24h

10 SRS308873 2 DPN 24h

11 SRS308874 2 DPN 48h

12 SRS308875 2 OHT 24h

13 SRS308875 2 OHT 24h

14 SRS308876 2 OHT 48h

15 SRS308877 3 Control 24h

16 SRS308878 3 Control 48h

17 SRS308879 3 DPN 24h

18 SRS308880 3 DPN 48h

19 SRS308881 3 OHT 24h

20 SRS308882 3 OHT 48h

21 SRS308883 4 Control 48h

22 SRS308884 4 DPN 24h

23 SRS308885 4 DPN 48h

24 SRS308885 4 DPN 48h

25 SRS308886 4 OHT 24h

26 SRS308887 4 OHT 48h

27 SRS308887 4 OHT 48h

We recommend to first add together technical replicates (i.e., libraries derived from the same samples), such that we
have one column per sample. As is often the case, these preparatory steps looks more complicated than the subsequent
actual analysis. In fact, the following operations are not specific to DESeq2 , but are specific preparations needed for this
data set. To understand the general ideas of DESeq2 , you could now skip to Section 3. What you will learn in the rest
of this section is an example of a typical preparatory data manipulation task done with elementary R functions. Details
on these can be found in general textbooks on R; also consider reading the help pages of the functions used.

We will now show a simple method to add together technical replicates, and then we will follow with a slightly more
complicated method. We can easily add up the columns by explicitly specifying the indices of the columns we want to
use as is and the columns we want to add up, and using cbind to bind all the columns to a matrix:

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 5

a <- assay(parathyroidGenesSE)

countdata0 <- cbind(a[,1:8], a[,9]+a[,10], a[,11],

a[,12]+a[,13], a[,14:22], a[,23]+a[,24], a[,25], a[,26]+a[,27])

While this is simple to understand, it is error-prone. Mistakes can easily happen when determining the column indices,
and it is tedious to update the code if the input data changes, for instance, if at a later time you would like to add more
replicates to your data set.

Next we will show a method using the R functions split and sapply, which are quite powerful when used together.
We first use the function split to see which columns need to be collapsed.

allColSamples <- colData(parathyroidGenesSE)$sample

sp <- split(seq(along=allColSamples), allColSamples)

Using sapply, we loop over the elements of sp, which correspond to the distinct samples, construct subtables of
the count table (i.e., assay(parathyroidGenesSE)) corresponding only to the current sample considered, and add up
across rows if there is more than one column. The result of the sapply call is a new table, in which each column now
corresponds to a different sample. We can check that this is indeed the same count table as produced by the simple code
used previously.

countdata <- sapply(sp, function(columns)

rowSums(assay(parathyroidGenesSE)[,columns,drop=FALSE]))

head(countdata)

SRS308865 SRS308866 SRS308867 SRS308868 SRS308869 SRS308870

ENSG00000000003 792 1064 444 953 519 855

ENSG00000000005 4 1 2 3 3 1

ENSG00000000419 294 282 164 263 179 217

ENSG00000000457 156 184 93 145 75 122

ENSG00000000460 396 207 210 212 221 173

ENSG00000000938 3 8 2 5 0 4

SRS308871 SRS308872 SRS308873 SRS308874 SRS308875 SRS308876

ENSG00000000003 413 365 1451 463 1303 424

ENSG00000000005 0 1 0 0 0 0

ENSG00000000419 277 204 790 257 771 275

ENSG00000000457 228 171 538 182 563 211

ENSG00000000460 611 199 1817 286 1869 238

ENSG00000000938 13 22 41 13 36 13

SRS308877 SRS308878 SRS308879 SRS308880 SRS308881 SRS308882

ENSG00000000003 305 391 586 714 957 346

ENSG00000000005 0 0 0 0 1 0

ENSG00000000419 263 281 406 568 764 288

ENSG00000000457 131 115 196 266 347 133

ENSG00000000460 188 102 389 294 778 162

ENSG00000000938 7 3 10 18 15 7

SRS308883 SRS308884 SRS308885 SRS308886 SRS308887

ENSG00000000003 433 402 788 366 763

ENSG00000000005 0 0 0 0 0

ENSG00000000419 259 250 418 227 560

ENSG00000000457 168 148 267 136 313

ENSG00000000460 85 339 229 314 350

ENSG00000000938 8 7 18 8 15

all(countdata == countdata0)

[1] TRUE

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 6

Having reduced our count data table to only one column per sample, we next need to subset the column metadata
accordingly, as we now have less columns. We also now use the sample names as names for the column data rows:

coldata <- colData(parathyroidGenesSE)[sapply(sp, `[`, 1),]

rownames(coldata) <- coldata$sample

coldata

DataFrame with 23 rows and 8 columns

run experiment patient treatment time submission

<character> <factor> <factor> <factor> <factor> <factor>

SRS308865 SRR479052 SRX140503 1 Control 24h SRA051611

SRS308866 SRR479053 SRX140504 1 Control 48h SRA051611

SRS308867 SRR479054 SRX140505 1 DPN 24h SRA051611

SRS308868 SRR479055 SRX140506 1 DPN 48h SRA051611

SRS308869 SRR479056 SRX140507 1 OHT 24h SRA051611

...

SRS308883 SRR479072 SRX140521 4 Control 48h SRA051611

SRS308884 SRR479073 SRX140522 4 DPN 24h SRA051611

SRS308885 SRR479074 SRX140523 4 DPN 48h SRA051611

SRS308886 SRR479076 SRX140524 4 OHT 24h SRA051611

SRS308887 SRR479077 SRX140525 4 OHT 48h SRA051611

study sample

<factor> <factor>

SRS308865 SRP012167 SRS308865

SRS308866 SRP012167 SRS308866

SRS308867 SRP012167 SRS308867

SRS308868 SRP012167 SRS308868

SRS308869 SRP012167 SRS308869

...

SRS308883 SRP012167 SRS308883

SRS308884 SRP012167 SRS308884

SRS308885 SRP012167 SRS308885

SRS308886 SRP012167 SRS308886

SRS308887 SRP012167 SRS308887

Question 3: What do the quotation marks in the expression ‘[‘ do? What happens if you omit them?
To unclutter the output in the subsequent steps, we only keep the column data columns that we actually need for

our analysis.

coldata <- coldata[, c("patient", "treatment", "time")]

head(coldata)

DataFrame with 6 rows and 3 columns

patient treatment time

<factor> <factor> <factor>

SRS308865 1 Control 24h

SRS308866 1 Control 48h

SRS308867 1 DPN 24h

SRS308868 1 DPN 48h

SRS308869 1 OHT 24h

SRS308870 1 OHT 48h

Our SummarizedExperiment object also contains metadata on the rows, which we can simply keep unchanged:

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 7

rowdata <- rowData(parathyroidGenesSE)

rowdata

GRangesList of length 63193:

$ENSG00000000003

GRanges with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 664095 ENSE00001459322

[2] X [99885756, 99885863] - | 664096 ENSE00000868868

[3] X [99887482, 99887565] - | 664097 ENSE00000401072

[4] X [99887538, 99887565] - | 664098 ENSE00001849132

[5] X [99888402, 99888536] - | 664099 ENSE00003554016

...

[13] X [99890555, 99890743] - | 664106 ENSE00003512331

[14] X [99891188, 99891686] - | 664108 ENSE00001886883

[15] X [99891605, 99891803] - | 664109 ENSE00001855382

[16] X [99891790, 99892101] - | 664110 ENSE00001863395

[17] X [99894942, 99894988] - | 664111 ENSE00001828996

##

...

<63192 more elements>

seqlengths:

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

We now have all the ingredients to prepare our data object in a form that is suitable for analysis, namely:
� countdata: a table with the read counts, with technical replicates summed up,
� coldata: a table with metadata on the count table’s columns, i.e., on the samples,
� rowdata: a table with metadata on the count table’s rows, i.e., on the genes, and
� a design formula, which tells which factors in the column metadata table specify the experimental design and how

these factors should be used in the analysis. We specify ∼ patient + treatment, which means that we want to
test for the effect of treatment (the last factor), controlling for the effect of patient (the first factor). You can use
R’s formula notation to express any experimental design that can be described within an ANOVA-like framework.

To now construct the data object from the matrix of counts and the metadata table, we use:

ddsFull <- DESeqDataSetFromMatrix(

countData = countdata,

colData = coldata,

design = ~ patient + treatment,

rowData = rowdata)

ddsFull

class: DESeqDataSet

dim: 63193 23

exptData(0):

assays(1): counts

rownames(63193): ENSG00000000003 ENSG00000000005 ... LRG_98 LRG_99

rowData metadata column names(0):

colnames(23): SRS308865 SRS308866 ... SRS308886 SRS308887

colData names(3): patient treatment time

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 8

3 Running the DESeq2 pipeline

Here we will analyze a subset of the samples, namely those taken after 48 hours, with either control or DPN treatment,
taking into account the multifactor design.

3.1 Preparing the data object for the analysis of interest

First we subset the relevant columns from the full dataset:

dds <- ddsFull[, colData(ddsFull)$treatment %in% c("Control","DPN") &

colData(ddsFull)$time == "48h"]

Sometimes it is necessary to “refactor” the factors, in case that levels have been dropped. (Here, for example, the
treatment factor still contains the level “OHT”, but no sample to this level.)

dds$patient <- factor(dds$patient)

dds$treatment <- factor(dds$treatment)

It will be convenient to make sure that Control is the first level in the treatment factor, so that the log2 fold changes
are calculated as treatment over control. The function relevel achieves this:

dds$treatment <- relevel(dds$treatment, "Control")

We can also remove rows which have zero counts for all samples, as these will be ignored in subsequent analyis. It is
not necessary to perform this step, though it will make cleaner print-outs in the following sections.

dds <- dds[rowSums(counts(dds)) > 0,]

A quick check whether we now have the right samples:

colData(dds)

DataFrame with 8 rows and 3 columns

patient treatment time

<factor> <factor> <factor>

SRS308866 1 Control 48h

SRS308868 1 DPN 48h

SRS308872 2 Control 48h

SRS308874 2 DPN 48h

SRS308878 3 Control 48h

SRS308880 3 DPN 48h

SRS308883 4 Control 48h

SRS308885 4 DPN 48h

3.2 Running the pipeline

With the data object prepared, the DESeq2 analysis can now be run with a single call to the function DESeq:

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 9

final dispersion estimates

1 rows did not converge in dispersion, labelled in mcols(object)£dispConv. Use larger maxit ar-

gument with estimateDispersions

fitting model and testing

3.3 Inspecting the results table

The results for the last variable in the design formula, in our case the treatment variable, can be extracted using the
results function.

res <- results(dds)

head(res)

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 623.42 -0.02045 0.0585 -0.3496 0.72664

ENSG00000000005 0.68 0.02101 0.2053 0.1023 0.91848

ENSG00000000419 299.75 -0.01483 0.0742 -0.2000 0.84148

ENSG00000000457 183.50 -0.08919 0.1065 -0.8371 0.40252

ENSG00000000460 200.46 0.35388 0.1109 3.1922 0.00141

ENSG00000000938 12.14 -0.00483 0.3205 -0.0151 0.98798

padj

<numeric>

ENSG00000000003 0.9135

ENSG00000000005 NA

ENSG00000000419 0.9529

ENSG00000000457 0.7591

ENSG00000000460 0.0307

ENSG00000000938 NA

As res is a DataFrame object, it carries metadata with information on the meaning of the columns:

mcols(res)

DataFrame with 6 rows and 2 columns

type description

<character> <character>

1 intermediate the base mean over all rows

2 results log2 fold change (MAP): treatment DPN vs Control

3 results standard error: treatment DPN vs Control

4 results Wald statistic: treatment DPN vs Control

5 results Wald test p-value: treatment DPN vs Control

6 results BH adjusted p-values

The first column, baseMean, is a just the average of the normalized count values, taken over all samples. The
remaining four columns refer to a specific contrast, namely the comparison of the levels DPN versus Control of the
factor variable treatment. See the help page for results (by typing ?results) for information on how to obtain other
contrasts.

The column log2FoldChange is the effect size estimate. It tells us how much the gene’s expression seems to have
changed due to treatment with DPN in comparison to control. This value is reported on a logarithmic scale to base 2:
for example, a log2 fold change of 1.5 means that the gene’s expression is increased by a factor of 21.5 ≈ 2.82.

Of course, this estimate has an uncertainty associated with it, which is available in the column lfcSE, the standard
error estimate for the log2 fold change estimate. We can also express the uncertainty of a particular effect size estimate

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 10

as the result of a statistical test. The purpose of a test for differential expression is to test whether the data provides
sufficient evidence to conclude that this value is really different from zero (and that the sign is correct). DESeq2 performs
for each gene a hypothesis test to see whether evidence is sufficient to decide against the null hypothesis that there is no
effect of the treatment on the gene and that the observed difference between treatment and control was merely caused
by experimental variability (i. e., the type of variability that you can just as well expect between different samples in the
same treatment group). As usual in statistics, the result of this test is reported as a p value, and it is found in the column
pvalue. (Remember that a p value indicates the probability that a fold change as strong as the observed one, or even
stronger, would be seen under the situation described by the null hypothesis.)

Finally, we note that a subset of the p values in res are NA (“not available”). The p values and adjusted p values
can be set to NA here for three reasons: 1) all samples had a count of zero (in which case the baseMean column will
have a zero and tests cannot be performed); 2) a count outlier was detected (in which case the p value and adjusted
p value will be set to NA to avoid a potential false positive call of differential expression); or 3) the gene was filtered
by automatic independent filtering (in which case only the adjusted p-value will be set to NA). More information about
the count outlier detection can be found in the manual page for the results function, accessible by typing ?results.
Automatic independent filtering will be discussed in Section 3.5 and is also controlled by the results function.

Question 4: How could you check to see if the baseMean is the mean of raw counts or the mean of normalized
counts?

3.4 Multiple testing

Novices in high-throughput biology often assume that thresholding these p values at 0.05, as is often done in other
settings, would be appropriate – but it is not. We briefly explain why:

There are 2115 genes with a p value below 0.05 among the 30434 genes, for which the test succeeded in reporting a
p value:

sum(res$pvalue < 0.05, na.rm=TRUE)

[1] 2115

We have removed NAs above, so let’s quickly check whether there are any:

table(is.na(res$pvalue))

##

FALSE

30434

Now, assume for a moment that the null hypothesis is true for all genes, i.e., no gene is affected by the treatment
with DPN. Then, by the definition of p value, we expect up to 5% of the genes to have a p value below 0.05. This
amounts to 1522 genes. If we just considered the list of genes with a p value below 0.05 as differentially expressed, this
list should therefore be expected to contain up to 1522/2115 = 72% false positives!

DESeq2 uses the so-called Benjamini-Hochberg (BH) adjustment; in brief, this method calculates for each gene an
adjusted p value which answers the following question: if one called significant all genes with a p value less than or equal
to this gene’s p value threshold, what would be the fraction of false positives (the false discovery rate, FDR) among them
(in the sense of the calculation outlined above)? These values, called the BH-adjusted p values, are given in the column
padj of the results object.

Hence, if we consider a fraction of 10% false positives acceptable, we can consider all genes with an adjusted p value
below 10%=0.1 as significant. How many such genes are there?

sum(res$padj < 0.1, na.rm=TRUE)

[1] 885

We subset the results table to these genes and then sort it by the log2-fold-change estimate to get the significant
genes with the strongest down-regulation

http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 11

resSig <- res[which(res$padj < 0.1),]

head(resSig[order(resSig$log2FoldChange),])

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000164089 101 -1.256 0.2270 -5.53 3.18e-08

ENSG00000163631 269 -0.942 0.1033 -9.11 8.09e-20

ENSG00000111181 114 -0.900 0.2640 -3.41 6.49e-04

ENSG00000169239 1548 -0.753 0.1065 -7.07 1.50e-12

ENSG00000041982 1493 -0.686 0.0922 -7.44 9.96e-14

ENSG00000145244 173 -0.676 0.2556 -2.65 8.15e-03

padj

<numeric>

ENSG00000164089 4.98e-06

ENSG00000163631 7.18e-17

ENSG00000111181 1.73e-02

ENSG00000169239 6.65e-10

ENSG00000041982 5.59e-11

ENSG00000145244 9.92e-02

and with the strongest upregulation

tail(resSig[order(resSig$log2FoldChange),])

DataFrame with 6 rows and 6 columns

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000005189 227 0.641 0.229 2.80 5.18e-03

ENSG00000156414 137 0.727 0.138 5.27 1.40e-07

ENSG00000103257 168 0.780 0.151 5.16 2.51e-07

ENSG00000101255 285 0.797 0.186 4.29 1.76e-05

ENSG00000130720 113 0.846 0.216 3.92 8.78e-05

ENSG00000092621 594 0.869 0.151 5.76 8.33e-09

padj

<numeric>

ENSG00000005189 7.42e-02

ENSG00000156414 1.70e-05

ENSG00000103257 2.68e-05

ENSG00000101255 1.10e-03

ENSG00000130720 3.74e-03

ENSG00000092621 1.48e-06

Question 5: What is the proportion of down- and up-regulation among the genes with adjusted p value less than
0.1?

3.5 Independent filtering

For weakly expressed genes, there is little chance of seeing differential expression, because the low read counts suffer from
such high Poisson noise that any biological effect is drowned in the uncertainties from the read counting. For example,
imagine the control group has around an average count of 2, and the treatment group has around an average count
of 1; without sequencing many biological replicates, this log2 fold change of -1 will be obscured by the randomness of
sampling at such low rates. By removing the weakly-expressed genes from the input to the FDR procedure, we can find
more genes to be significant among those which are kept, and so improve the power of our test.

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 12

For this reason, DESeq2 automatically performs independent filtering on the mean of the normalized counts, in order
to optimize the number of genes with FDR less than a threshold, which is set by default to 0.1. The mean of normalized
counts is called a “filter statistic” in this case. The term independent highlights an important caveat. Such filtering is
permissible only if the filter statistic is independent of the actual test statistic [1]. Otherwise, the filtering would invalidate
the test and consequently the assumptions of the BH procedure. This is why we filter on the average over all samples:
this filter is blind to the assignment of samples to the treatment and control group and hence independent.

The number of rejections for a dataset can be plotted against different cutoff values of the filter statistic as shown
in Figure 1, to see how filtering increases power. A table of the number of rejections over the quantiles is stored as an
attribute of the results object res, accessible using the attr function:

plot(attr(res,"filterNumRej"),type="b",

ylab="number of rejections")

Figure 1: The number of rejected tests for FDR less than 0.1 plotted over theta, the quantiles of the filter statistic.

We can turn off the independent filtering behavior with an argument to the results function. Indeed, we see that
without independent filtering, less genes are reported with an FDR less than 0.1:

sum(res$padj < 0.1, na.rm=TRUE)

[1] 885

resNoFilt <- results(dds, independentFiltering=FALSE)

sum(resNoFilt$padj < 0.1, na.rm=TRUE)

[1] 571

3.6 Diagnostic plots

A so-called MA plot provides a useful overview for an experiment with a two-group comparison:

http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 13

plotMA(dds, ylim = c(-1.5, 1.5))

The plot (Fig. 2) represents each gene with a dot. The x axis is the average expression over all samples, the y axis
the log2 fold change between treatment and control. Genes with an adjusted p value below a threshold (here 0.1, the
default) are shown in red.

Figure 2: The MA-plot shows the log2 fold changes from the treatment over the mean of normalized counts, i.e. the
average of counts normalized by size factor. The DESeq2 package incorporates a prior on log2 fold changes, resulting in
moderated estimates from genes with low counts and highly variable counts, as can be seen by the narrowing of spread
of points on the left side of the plot.

The result of independent filtering is that only genes with mean of normalized counts greater than the threshold will
be assigned a false discovery rate.

Question 6: Can you provide adjusted p values to the MA-plot such that the genes with FDR less than 0.1 without
filtering can be seen?

Also note DESeq2 ’s shrinkage estimation of log fold changes (LFCs): When count values are too low to allow an
accurate estimate of the LFC, the value is “shrunken” towards zero to avoid that these values, which otherwise would
frequently be unrealistically large, dominate the top-ranked log fold changes.

Whether a gene is called significant depends not only on its LFC but also on its within-group variability, which DESeq2
quantifies as the dispersion. For strongly expressed genes, the dispersion can be understood as a squared coefficient of
variation: a dispersion value of 0.01 means that the gene’s expression tends to differ by typically

√
0.01 = 10% between

samples of the same treatment group. For weak genes, the Poisson noise is an additional source of noise, which is added
to the dispersion.

The function plotDispEsts visualizes DESeq2 ’s dispersion estimates:

plotDispEsts(dds)

The black dots are the dispersion estimates for each gene as obtained by considering the information from each gene
separately. Unless one has many samples, these values fluctuate strongly around their true values. Therefore, we fit the
red trend line, which shows the dispersions’ dependence on the mean, and then shrink each gene’s estimate towards the
red line to obtain the final estimates (blue dots) that are then used in the hypothesis test. The blue cirlces highlight
those genes which are labelled as dispersion outliers: the dispersion estimates deviate too far from the red line to justify
the shrinkage method. For dispersion outliers, the original estimates are not shrunk toward the red line.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 14

Figure 3: Plot of dispersion estimates. See text for details

Figure 4: Histogram of the p values returned by the test for differential expression.

Another useful diagnostic plot is the histogram of the p values (Fig. 4).

hist(res$pvalue, breaks=100)

Question 7: Which part of the histogram is caused by genes that are called significant? And which part is caused
by those that are truly significant? Why are there “spikes” at intermediate values?

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 15

4 Adding gene names

Our result table only uses Ensembl gene IDs, but gene names may be more informative. Bioconductor’s annotation
packages help with mapping various ID schemes to each other.

We load the annotation package org.Hs.eg.db:

library("org.Hs.eg.db")

Loading required package: AnnotationDbi

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

##

Loading required package: DBI

This is the organism annotation package (“org”) for Homo sapiens (“Hs”), organized as an AnnotationDbi package
(“db”), using Entrez Gene IDs (“eg”) as primary key.

To get a list of all available key types, use

columns(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE" "ACCNUM"

[6] "ALIAS" "CHR" "CHRLOC" "CHRLOCEND" "ENZYME"

[11] "MAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[16] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[26] "EVIDENCEALL" "ONTOLOGYALL" "OMIM" "UCSCKG"

Converting IDs with the native functions from the AnnotationDbi package is currently a bit cumbersome, so we
provide the following convenience function (without explaining how exactly it works):

convertIDs <- function(ids, fromKey, toKey, db, ifMultiple=c("putNA", "useFirst")) {

stopifnot(inherits(db, "AnnotationDb"))

ifMultiple <- match.arg(ifMultiple)

suppressWarnings(selRes <- AnnotationDbi::select(

db, keys=ids, keytype=fromKey, cols=c(fromKey,toKey)))

if(ifMultiple == "putNA") {

duplicatedIds <- selRes[duplicated(selRes[,1]), 1]

selRes <- selRes[! selRes[,1] %in% duplicatedIds,] }

return(selRes[match(ids, selRes[,1]), 2])

}

This function takes a list of IDs as first argument and their key type as the second argument. The third argument is
the key type we want to convert to, the fourth is the AnnotationDb object to use. Finally, the last argument specifies
what to do if one source ID maps to several target IDs: should the function return an NA or simply the first of the
multiple IDs?

To convert the Ensembl IDs in the rownames of res to gene symbols and add them as a new column, we use:

res$symbol <- convertIDs(row.names(res), "ENSEMBL", "SYMBOL", org.Hs.eg.db)

head(res)

DataFrame with 6 rows and 7 columns

http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 16

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000003 623.42 -0.02045 0.0585 -0.3496 0.72664

ENSG00000000005 0.68 0.02101 0.2053 0.1023 0.91848

ENSG00000000419 299.75 -0.01483 0.0742 -0.2000 0.84148

ENSG00000000457 183.50 -0.08919 0.1065 -0.8371 0.40252

ENSG00000000460 200.46 0.35388 0.1109 3.1922 0.00141

ENSG00000000938 12.14 -0.00483 0.3205 -0.0151 0.98798

padj symbol

<numeric> <character>

ENSG00000000003 0.9135 TSPAN6

ENSG00000000005 NA TNMD

ENSG00000000419 0.9529 DPM1

ENSG00000000457 0.7591 SCYL3

ENSG00000000460 0.0307 C1orf112

ENSG00000000938 NA FGR

Finally, we note that you can easily save the results table in a CSV file, which you can then load with a spreadsheet
program such as Excel:

write.csv(as.data.frame(res), file="results.csv")

5 Downstream analyses

A list of gene names is no final result. We demonstrate two possible further analysis steps.

5.1 Gene set enrichment analysis

Do the genes with a strong up- or down-regulation have something in common? We perform next a gene-set enrichment
analysis (GSEA) to examine this question.

We use the gene sets in the Reactome database

library("reactome.db")

This database works with Entrez IDs, so we add a column with such IDs, using our convertIDs function:

res$entrez <- convertIDs(row.names(res), "ENSEMBL", "ENTREZID", org.Hs.eg.db)

Next, we subset the results table, res, to only those genes for which the Reactome database has data (i.e, whose
Entrez ID we find in the respective key column of reactome.db) and for which the test gave a p value that was not NA.

res2 <- res[res$entrez %in% keys(reactome.db, "ENTREZID") &

!is.na(res$pvalue) ,]

head(res2)

DataFrame with 6 rows and 8 columns

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000000419 299.7 -0.01483 0.0742 -0.2000 0.841

ENSG00000000938 12.1 -0.00483 0.3205 -0.0151 0.988

ENSG00000000971 19.7 -0.38555 0.2648 -1.4559 0.145

ENSG00000001084 323.5 0.04504 0.0945 0.4765 0.634

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 17

ENSG00000001167 412.4 -0.05387 0.1031 -0.5225 0.601

ENSG00000001626 11.0 0.15267 0.2988 0.5109 0.609

padj symbol entrez

<numeric> <character> <character>

ENSG00000000419 0.953 DPM1 8813

ENSG00000000938 NA FGR 2268

ENSG00000000971 NA CFH 3075

ENSG00000001084 0.880 GCLC 2729

ENSG00000001167 0.870 NFYA 4800

ENSG00000001626 NA CFTR 1080

Using select, a function from AnnotationDbi for querying database objects, we get a table with the mapping from
Entrez IDs to Reactome Path IDs. We suppress a warning from select about one-to-many mappings, as we expect that
a single Entrez ID will often link to more than one Reactome IDs.

suppressWarnings(reactomeTable <- AnnotationDbi::select(reactome.db, keys=res2$entrez,

keytype="ENTREZID", columns=c("ENTREZID","REACTOMEID")))

head(reactomeTable)

ENTREZID REACTOMEID

1 8813 162699

2 8813 163125

3 8813 392499

4 8813 446193

5 8813 446203

6 8813 446219

The next code chunk transforms this table into an incidence matrix. This is a boolean matrix with one row for each
Reactome Path and one column for each gene in res2, which tells us which genes are members of which Reactome
Paths. (If you want to understand how this chunk exactly works, read up about the tapply function.)

incm <- do.call(rbind, with(reactomeTable, tapply(

ENTREZID, factor(REACTOMEID), function(x) res2$entrez %in% x)))

colnames(incm) <- res2$entrez

str(incm)

logi [1:1522, 1:5729] FALSE FALSE FALSE FALSE FALSE FALSE ...

- attr(*, "dimnames")=List of 2

..$: chr [1:1522] "1059683" "109581" "109582" "109606" ...

..$: chr [1:5729] "8813" "2268" "3075" "2729" ...

We remove all rows corresponding to Reactome Paths with less than 5 assigned genes.

incm <- incm[rowSums(incm) >= 5,]

To test whether the genes in a Reactome Path behave in a special way in our experiment, we perform t-tests to see
whether the average of the genes’ log2 fold change values are different from zero. If so, we can say that our treatment
tends to upregulate (or downregulate) the genes in the category. To facilitate the computations, we define a little helper
function:

testCategory <- function(reactomeID) {

isMember <- incm[reactomeID,]

data.frame(

reactomeID = reactomeID,

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 18

numGenes = sum(isMember),

avgLFC = mean(res2$log2FoldChange[isMember]),

strength = sum(res2$log2FoldChange[isMember]) / sqrt(sum(isMember)),

pvalue = t.test(res2$log2FoldChange[isMember])$p.value,

reactomeName = reactomePATHID2NAME[[reactomeID]]) }

The function can be called with a Reactome Path ID:

testCategory("109581")

reactomeID numGenes avgLFC strength pvalue reactomeName

1 109581 153 -0.0121 -0.15 0.202 Homo sapiens: Apoptosis

As you can see the function not only performs the t test and returns the p value but also lists other useful information
such as the number of genes in the category, the average log fold change, a“strength”measure (see below) and the name
with which Reactome describes the Path.

We call the function for all Paths in our incidence matrix and collect the results in a data frame:

reactomeResult <- do.call(rbind, lapply(rownames(incm), testCategory))

As we performed many tests, we should again use a multiple testing adjustment.

reactomeResult$padjust <- p.adjust(reactomeResult$pvalue, "BH")

This is a list of Reactome Paths which are significantly differentially expressed in our comparison of DPN treatment
with control, sorted according to strength of the signal:

reactomeResultSignif <- reactomeResult[reactomeResult$padjust < 0.05,]

reactomeResultSignif[order(-abs(reactomeResultSignif$strength)),]

reactomeID numGenes avgLFC strength pvalue

950 445355 20 -0.1442 -0.645 4.54e-04

133 1430728 1367 0.0163 0.603 5.70e-04

174 156590 25 0.1178 0.589 1.10e-04

802 381070 46 0.0829 0.563 2.51e-04

1219 913531 141 -0.0472 -0.560 1.42e-04

105 1280215 248 -0.0319 -0.502 2.85e-04

553 2024096 21 0.1084 0.497 1.06e-04

69 1169408 65 -0.0592 -0.478 3.87e-04

70 1169410 65 -0.0592 -0.478 3.87e-04

478 191273 22 0.1012 0.475 1.42e-04

450 189445 16 0.0941 0.376 5.42e-05

566 2032785 10 -0.1175 -0.372 2.34e-04

1126 73857 96 -0.0365 -0.358 2.56e-05

669 2468052 11 -0.1011 -0.335 2.87e-04

1161 75071 124 -0.0301 -0.335 3.23e-05

1095 72163 101 -0.0324 -0.325 2.33e-05

1097 72172 101 -0.0324 -0.325 2.33e-05

1100 72203 105 -0.0316 -0.324 2.72e-05

reactomeName padjust

950 Homo sapiens: Smooth Muscle Contraction 0.03406

133 Homo sapiens: Metabolism 0.04037

174 Homo sapiens: Glutathione conjugation 0.01750

802 Homo sapiens: Activation of Chaperones by IRE1alpha 0.02611

1219 Homo sapiens: Interferon Signaling 0.01806

105 Homo sapiens: Cytokine Signaling in Immune system 0.02611

553 Homo sapiens: HS-GAG degradation 0.01750

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 19

69 Homo sapiens: ISG15 antiviral mechanism 0.03084

70 Homo sapiens: Antiviral mechanism by IFN-stimulated genes 0.03084

478 Homo sapiens: Cholesterol biosynthesis 0.01806

450 Homo sapiens: Metabolism of porphyrins 0.01152

566 Homo sapiens: YAP1- and WWTR1 (TAZ)-stimulated gene expression 0.02611

1126 Homo sapiens: RNA Polymerase II Transcription 0.00822

669 Homo sapiens: Establishment of Sister Chromatid Cohesion 0.02611

1161 Homo sapiens: mRNA Processing 0.00822

1095 Homo sapiens: mRNA Splicing - Major Pathway 0.00822

1097 Homo sapiens: mRNA Splicing 0.00822

1100 Homo sapiens: Processing of Capped Intron-Containing Pre-mRNA 0.00822

Note that such lists need to be interpreted with care, and a grain of salt. Which of these categories make sense, given
the biology of the experiment?

5.2 Nearest peak to a differentially expressed gene

The RNA-Seq experiment analyzed above provides a list of genes which have responded to a selective estrogen-receptor-
beta agonist. We can investigate whether we find estrogen receptor binding sites in the vicinity of the gene with the
highest fold induction. In order to match differentially expressed genes to other experiment data, we will use annotated
binding sites of estrogen receptor alpha from the ENCODE project. It is not necessarily the case that these annotated
binding sites are actually functional in the cell lines of the RNA-Seq experiment or biologically relevant as the alpha
and beta subtypes are distinct proteins transcribed from different genes; here we only use these binding site data for
demonstration purposes.

Let us consider a particular gene with a low p value. The rowData function provides us with all the information
about the gene model; each of the exons is represented as a GRanges, and these are tied together as a GRangesList. We
use the function range to extract the entire range of the gene, from the start of the left-most exon to the end of the
right-most exon. This is all the information we need in order to find the nearest binding site.

deGeneID <- "ENSG00000099194"

res[deGeneID,]

DataFrame with 1 row and 8 columns

baseMean log2FoldChange lfcSE stat pvalue

<numeric> <numeric> <numeric> <numeric> <numeric>

ENSG00000099194 8794 0.421 0.0193 21.9 4.94e-106

padj symbol entrez

<numeric> <character> <character>

ENSG00000099194 5.27e-102 SCD 6319

deGene <- range(rowData(dds[deGeneID,])[[1]])

names(deGene) <- deGeneID

deGene

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

ENSG00000099194 10 [102106881, 102124591] +

seqlengths:

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

We would like to compare the location of this gene with the location of annotated estrogen receptor binding sites,
provided by the UCSC Genome Browser. We must first alter the sequence name (the chromosome name) of the differ-
entially expressed gene, as the Ensembl gene annotation does not use the“chr”prefix, which the UCSC chromosomes are

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 20

annotated with. (Note that we ignore here another complication, which is that the Ensembl sequence “MT” corresponds
to the UCSC’s sequence“chrM”.) We use the paste0 function, which concatenates the character vectors provided without
using any separating characters. We then create a range which is 10 Mb to the left and right of the start of the deGene

object.

as.character(seqnames(deGene))

[1] "10"

ucscChrom <- paste0("chr",as.character(seqnames(deGene)))

ucscRanges <- ranges(flank(deGene,width=10e6,both=TRUE))

subsetRange <- GRanges(ucscChrom, ucscRanges)

subsetRange

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

ENSG00000099194 chr10 [92106881, 112106880] *

seqlengths:

chr10

NA

We now provide code which would download a track from the UCSC Genome Browser, in our case a track containing
transcription factor binding sites obtained from ChIP-Seq experiments across various cell lines, generated by the ENCODE
project.

The track names and table names must match a track name provided by the UCSC Genome Browser. For more
information on these steps, see the detailed instructions in the vignette of the rtracklayer package.

##

Please do not run this code if you do not have an internet connection,

alternatively use the local file import in the next code chunk.

##

library("rtracklayer")

trackName <- "wgEncodeRegTfbsClusteredV2"

tableName <- "wgEncodeRegTfbsClusteredV2"

trFactor <- "ERalpha_a"

mySession <- browserSession()

ucscTable <- getTable(ucscTableQuery(mySession, track=trackName,

range=subsetRange, table=tableName,

name=trFactor))

Here we use a locally cached copy of ucscTable:

ucscTableFile <- "/share/home/teacher/EMBO_HTS/DESeq_lab/localUcscTable.csv"

ucscTable <- read.csv(ucscTableFile, stringsAsFactors=FALSE)

We now can use the downloaded table of annotated estrogen receptor peaks. Whether to use a cutoff on the provided
peak scores at this step, or what scores cutoff to use, depends on your experience with the specific transcription factor
and the ChIP-Seq experiments used to define these peaks. It often makes sense to visualize tracks in a genome browser
in order to get a sense of the qualitative difference between peaks of different scores.

We create a GRanges object, peaks, from the table obtained from UCSC, and then we convert the chromosome
names back to the Ensembl style using the global substitute function, gsub. Finally, we enforce that the sequence levels
of the peaks match the sequence levels of the differential expressed gene, which is necessary for performing the nearest
matching in the following code chunk.

http://bioconductor.org/packages/release/bioc/html/rtracklayer.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 21

peaks <- with(ucscTable, GRanges(chrom, IRanges(chromStart, chromEnd),

score=score))

seqlevels(peaks) <- gsub("chr(.+)","\\1",seqlevels(peaks))

seqlevels(peaks) <- seqlevels(deGene)

Now we have two GRanges objects, defined over the same chromosomes, so we can use the distanceToNearest

function from the package GRanges. This provides a Hits object, which contains the matches between the “query” and
the “subject”, the first and second arguments to the function, as well as the distance from the query to the subject.
As we only have a single query, there should only be one nearest range in the subject. See the documentation via
?distanceToNearest and ?Hits for more information on the options for the this matching step.

d2nearest <- distanceToNearest(deGene, peaks)

Question 8: What is the distance from the differentially expressed gene to all the peaks?
We can now examine the object d2nearest. This tells us that the nearest peak is 44 base pairs from the differential

expressed gene.

d2nearest

Hits of length 1

queryLength: 1

subjectLength: 168

queryHits subjectHits distance

<integer> <integer> <integer>

1 1 118 44

The function subjectHits is used to extract the index of the closest hit in the peaks object.

deGene

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

ENSG00000099194 10 [102106881, 102124591] +

seqlengths:

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

peaks[subjectHits(d2nearest)]

GRanges with 1 range and 1 metadata column:

seqnames ranges strand | score

<Rle> <IRanges> <Rle> | <integer>

[1] 10 [102124636, 102124912] * | 76

seqlengths:

1 2 ... LRG_98 LRG_99

NA NA ... NA NA

Is 44 base pairs unexpectedly close? Here we make a simple plot of the starting points of the peaks and gene along
the chromosome, to get a sense of the distribution of peaks and how surprised we should be with the distance of the
nearest. To identify the nearest peak, we construct a logical vector peakNearest, which can be used to change the y
value and the color of the point corresponding to the nearest peak.

http://bioconductor.org/packages/release/bioc/html/GRanges.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 22

plotRange <- start(deGene) + 1e6 * c(-1,1)

peakNearest <- (seq_along(peaks) == subjectHits(d2nearest))

plot(x=start(peaks), y=ifelse(peakNearest,.3,.2),

ylim=c(0,1), xlim=plotRange, pch='p',

col=ifelse(peakNearest,"red","grey60"),

yaxt="n", ylab="",

xlab=paste("2 Mb on chromosome",as.character(seqnames(deGene))))

points(x=start(deGene),y=.8,pch='g')

Figure 5: A 2 Mb genomic range showing the location of the differentially expressed gene (labelled ’g’), and the peaks
(labelled ’p’). As there are only 14 peaks spread over 2 Mb, it is surprising to find a peak 44 base pairs away from the
differentially expressed gene.

Again, the biological relevance of the distances between peaks and genes is another matter, especially considering the
data are from different sources. An important consideration when investigating the distribution of distances between two
sets of genomic features, is how the individual sets cluster along the genome.

Question 9: Are the peaks relatively uniformly distributed?

6 Working with rlog-transformed data

6.1 The rlog transform

Many common statistical methods for exploratory analysis of multidimensional data, especially methods for clustering
and ordination (e. g., principal-component analysis and the like), work best for (at least approximately) homoskedastic
data; this means that the variance of an observable (i.e., here, the expression strength of a gene) does not depend on the
mean. In RNA-Seq data, however, variance grows with the mean. For example, if one performs PCA directly on a matrix
of normalized read counts, the result typically depends only on the few most strongly expressed genes because they show
the largest absolute differences between samples. A simple and often used strategy to avoid this is to take the logarithm
of the normalized count values; however, now the genes with low counts tend to dominate the results because, due to
the strong Poisson noise inherent to small count values, they show the strongest relative differences between samples.

As a solution, DESeq2 offers the regularized-logarithm transformation, or rlog for short. For genes with high counts,
the rlog transformation differs not much from an ordinary log2 transformation. For genes with lower counts, however,
the values are shrunken towards the genes’ averages across all samples. Using an empirical Bayesian prior in the form of
a ridge penality, this is done such that the rlog-transformed data are approximately homoskedastic.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 23

The function rlogTransform returns a SummarizedExperiment object which contains the rlog-transformed values in
its assay slot:

rld <- rlogTransformation(dds)

you had estimated gene-wise dispersions, removing these

you had estimated fitted dispersions, removing these

head(assay(rld))

SRS308866 SRS308868 SRS308872 SRS308874 SRS308878 SRS308880

ENSG00000000003 9.716 9.687 9.133 9.190 8.960 8.871

ENSG00000000005 -0.679 -0.475 -0.629 -0.782 -0.783 -0.795

ENSG00000000419 8.100 8.110 8.240 8.290 8.302 8.307

ENSG00000000457 7.444 7.302 7.816 7.709 7.222 7.343

ENSG00000000460 7.573 7.671 7.987 8.171 7.135 7.453

ENSG00000000938 3.235 3.075 4.180 3.672 2.966 3.403

SRS308883 SRS308885

ENSG00000000003 9.094 9.114

ENSG00000000005 -0.783 -0.793

ENSG00000000419 8.264 8.172

ENSG00000000457 7.601 7.495

ENSG00000000460 7.017 7.375

ENSG00000000938 3.368 3.500

To show the effect of the transformation, we plot the first sample against the second, first simply using the log2

function (after adding 1, to avoid taking the log of zero), and then using the rlog-transformed values.

Figure 6: Scatter plot of sample 2 versus sample 1. Left: using an ordinary log2 transformation. Right: Using the rlog
transformation.

par(mfrow = c(1, 2))

plot(log2(1+counts(dds, normalized=TRUE)[, 1:2]), col="#00000020", pch=20, cex=0.3)

plot(assay(rld)[, 1:2], col="#00000020", pch=20, cex=0.3)

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 24

Note that, in order to make it easier to see where several points are plotted on top of each other, we set the plotting
color to a semi-transparent black (encoded as #00000020) and changed the points to solid disks (pch=20) with reduced
size (cex=0.3)1.

In Figure 6, we can see how genes with low counts seem to be excessively variable on the ordinary logarithmic scale,
while the rlog transform compresses differences for genes for which the data cannot provide good information anyway.

6.2 Sample distances

A useful first step in an RNA-Seq analysis is often to assess overall similarity between samples: Which samples are similar
to each other, which are different? Does this fit to the expectation from the experiment’s design?

Figure 7: Heatmap of Euclidean sample distances after rlog transformation.

We use the R function dist to calculate the Euclidean distance between samples. To avoid that the distance
measure is dominated by a few highly variable genes, and have a roughly equal contribution from all genes, we use it on
the rlog-transformed data:

sampleDists <- dist(t(assay(rld)))

sampleDists

SRS308866 SRS308868 SRS308872 SRS308874 SRS308878 SRS308880 SRS308883

SRS308868 27.6

SRS308872 70.4 72.7

SRS308874 70.3 71.5 27.8

SRS308878 91.8 94.4 91.8 93.9

SRS308880 91.8 93.8 92.9 94.3 26.8

SRS308883 79.9 82.7 76.6 78.4 69.4 69.9

SRS308885 78.0 79.8 75.2 76.1 71.0 70.0 27.4

Note the use of the function t to transpose the data matrix. We need this because dist calculates distances between
data rows and our samples constitute the columns.

We visualize the distances in a heatmap, using the function heatmap.2 from the gplots package.

1The function heatscatter from the package LSD offers a colourful alternative.

http://cran.fhcrc.org/web/packages/gplots/index.html
http://cran.fhcrc.org/web/packages/LSD/index.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 25

sampleDistMatrix <- as.matrix(sampleDists)

rownames(sampleDistMatrix) <- paste(colData(rld)$treatment,

colData(rld)$patient, sep="-")

library("gplots")

KernSmooth 2.23 loaded

Copyright M. P. Wand 1997-2009

##

Attaching package: ’gplots’

##

The following object is masked from ’package:IRanges’:

##

space

##

The following object is masked from ’package:stats’:

##

lowess

heatmap.2(sampleDistMatrix, trace="none")

Note that we have changed the row names of the distance matrix to contain treatment type and patient number
instead of sample ID, so that we have all this information in view when looking at the heatmap (Fig. 7).

Figure 8: Principal components analysis (PCA) of samples after rlog transformation.

Question 10: Some people find the colour scheme used in Figure 7 ugly. Make a better version. Hint: Look at the
sequential colour schemes in the RColorBrewer package and at the colorRampPalette function.

Another way to visualize sample-to-sample distances is a principal-components analysis (PCA). In this ordination
method, the data points (i.e., here, the samples) are projected onto the 2D plane such that they spread out optimally
(Fig. 8).

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 26

print(plotPCA(rld, intgroup = c("patient", "treatment")))

Here, we have used the function plotPCA which comes with DESeq2 . The two terms specified as intgroup are
column names from our sample data; they tell the function to use them to choose colours.

From both visualizations, we see that the differences between patients is much larger than the difference between
treatment and control samples of the same patient. This shows why it was important to account for this paired design
(“paired”, because each treated sample is paired with one control sample from the same patient). We did so by using the
design formula !~ patient treatment! when setting up the data object in the beginning. Had we used an un-paired
analysis, by specifying only ~ treatment, we would not have found many hits, because then, the patient-to-patient
differences would have drowned out any treatment effects.

Here, we have performed this sample distance analysis towards the end of our analysis. In practice, however, this is
a step suitable to give a first overview on the data. Hence, one will typically carry out this analysis as one of the first
steps in an analysis. To this end, you may also find the function arrayQualityMetrics, from the equinymous package,
useful.

6.3 Gene clustering

Figure 9: Heatmap with gene clustering.

In the heatmap of Fig. 7, the dendrogram at the side shows us a hierarchical clustering of the samples. Such a
clustering can also be performed for the genes.

Since the clustering is only relevant for genes that actually carry signal, one usually carries it out only for a subset of
most highly variable genes. Here, for demonstration, let us select the 35 genes with the highest variance across samples:

library("genefilter")

topVarGenes <- head(order(rowVars(assay(rld)), decreasing=TRUE), 35)

The heatmap becomes more interesting if we do not look at absolute expression strength but rather at the amount
by which each gene deviates in a specific sample from the gene’s average across all samples. Hence, we center and scale
each genes’ values across samples, and plot a heatmap.

http://bioconductor.org/packages/release/bioc/html/DESeq2.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 27

heatmap.2(assay(rld)[topVarGenes,], scale="row",

trace="none", dendrogram="column",

col = colorRampPalette(rev(brewer.pal(9, "RdBu")))(255))

We can now see (Fig. 9) blocks of genes which covary across patients. Often, such a heatmap is insightful, even
though here, seeing these variations across patients is of limited value because we are rather interested in the effects
between the two samples from each patient.

7 Advanced Questions

For these questions, we provide (and probably have) no solutions, advanced readers are encouraged to explore them.
1. DESeq2 performs the shrinkage of the dispersion estimates by fitting a parametric curve on the mean of normalized

counts (cf. Figure 3). However, one could argue that the biological variability of genes should not be a function of
counts, but of counts per gene length (i. e., expression level), and that regression on that covariate should lead to
a better fit. Write your own version of the estimateDispersions function to explore this question.

2. What is the contribution of UTR length variations to the between-replicates variability modelled by DESeq2? The
read counting script (available in the vignette of parathyroidSE) uses all exons of the genes, which includes UTRs.
Would detection power be increased –or would we preferentially detect different phenomena– if we left out UTRs
from the counting (i. e. count reads that fall on coding exons only); or indeed, if we looked only at UTRs?

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/data/experiment/html/parathyroidSE.html

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 28

8 Solutions

Answer 1:

nrow(parathyroidGenesSE)

[1] 63193

Answer 2:

rowData(parathyroidGenesSE)

GRangesList of length 63193:

$ENSG00000000003

GRanges with 17 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] X [99883667, 99884983] - | 664095 ENSE00001459322

[2] X [99885756, 99885863] - | 664096 ENSE00000868868

[3] X [99887482, 99887565] - | 664097 ENSE00000401072

[4] X [99887538, 99887565] - | 664098 ENSE00001849132

[5] X [99888402, 99888536] - | 664099 ENSE00003554016

...

[13] X [99890555, 99890743] - | 664106 ENSE00003512331

[14] X [99891188, 99891686] - | 664108 ENSE00001886883

[15] X [99891605, 99891803] - | 664109 ENSE00001855382

[16] X [99891790, 99892101] - | 664110 ENSE00001863395

[17] X [99894942, 99894988] - | 664111 ENSE00001828996

##

...

<63192 more elements>

seqlengths:

1 2 ... LRG_98 LRG_99

249250621 243199373 ... 18750 13294

Answer 3:
The function sapply expects an R function as its second argument. Here, we want to provide it with the function

for vector subsetting (as in a[1]), and the name of this function is [. However, if we provide that name without the
quotation marks, the R interpreter gets confused and complains about the unexpected symbol (try this out). Hence we
need to quote the function name in our call to sapply.

Answer 4: The raw counts and normalized counts of a DESeqDataSet object are available via the accessor function
counts, which has an argument normalized, which defaults to FALSE.

all.equal(res$baseMean, rowMeans(counts(dds)))

[1] "names for current but not for target"

[2] "Mean relative difference: 0.0582"

all.equal(res$baseMean, rowMeans(counts(dds,normalized=TRUE)))

[1] "names for current but not for target"

Answer 5:

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 29

table(sign(resSig$log2FoldChange))

##

-1 1

457 428

Answer 6:
As we have already calculated resNoFilt, we only have to provide the column of adjusted p values to the plotMA

function.

plotMA(dds, pvalues=resNoFilt$padj, ylim = c(-1.5, 1.5))

See Figure 10.

Figure 10: The MA-plot with red points indicating adjusted p value less than 0.1 without independent filtering.

Answer 7: Genes that are not differentially expressed have p values that are approximately uniformly distributed
between 0 and 1. This gives rise to the floor of bars of equal heights. The truly differentially expressed genes give rise
to the tall bar(s) at the very left – but only to that part of the bars that raises above the uniform floor. Of course, we
cannot know which of the genes in these tall bars are true ones and which are not. When only looking at the bars to the
left of our chosen p value cut-off, the ratio of “floor” area to total area provides an estimate of the false discovery rate.
This is a graphical way of understanding FDR.

The rule that p values from null cases are uniform is true only for continuous test statistics. However, for genes
with low counts, the fact that we are working with integer counts becomes noticeable, and gives rise to the spikes at
intermediate p values.

Answer 8:

distance(deGene, peaks)

[1] 9475047 9429128 9425728 9416450 9378087 9377697 9292445 9147971 9052350

[10] 8985898 8790054 8757486 8746708 8742787 8675294 8674780 8664979 8656386

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 30

[19] 8482847 8223783 8221925 8135509 8001210 7455663 7085829 6942799 6925411

[28] 6901313 6888089 6884998 6881075 6880706 6864676 6780255 6775784 6605487

[37] 6599859 6596686 6588697 6583718 6571499 6420064 6351948 6351146 6329893

[46] 6319663 6310500 6310175 6308781 6304333 6293607 6288353 6271339 6268796

[55] 6262968 5922099 5213835 5117195 5058165 5057764 5038070 4950763 4846639

[64] 4840470 4690192 4604930 4150399 4075280 3867684 3837681 3750152 3728198

[73] 3713689 3672012 3545140 3489164 3483060 3482656 3374532 3145464 3009849

[82] 3009475 2945584 2938228 2898743 2780415 2775156 2772196 2766543 2697779

[91] 2134525 2099928 2093216 2080614 2079696 2078669 2077381 2074629 2052830

[100] 2050846 2044996 2044079 2043235 2032452 1972277 1970323 1864919 1843269

[109] 1397487 951766 778762 566972 415890 336981 235041 45754 1220

[118] 44 518646 536372 624809 727175 759664 988971 1236678 1267088

[127] 1482084 1528951 1573655 1600301 1752606 1755604 1767986 1810760 1842340

[136] 1962210 2003350 2039054 2048291 2137914 2293613 2342835 2345825 2347756

[145] 2399792 2400158 2404602 2409590 2489595 2791121 2803606 2806523 2866416

[154] 2867474 4107727 4108577 4109757 4112806 4115469 4116070 4198736 7246349

[163] 9538145 9592618 9593558 9704719 9860874 9909237

Answer 9:
We can answer this question by investigating the inter-peak distances. As all of our peaks are on the same chromosome,

we just sort the peak starts and subtract the 2nd from the 1st, the 3rd from the 2nd, etc. Then we call the summary

function which provides the mean and median. Note that the mean is constricted: it must be equal to the total span
divided by the number of inter-peak distances. The median distance is about one quarter of the mean, so the peaks tend
to cluster. You can also verify this by plotting the histogram of peakDists.

peakDists <- diff(sort(start(peaks)))

summary(peakDists)

Min. 1st Qu. Median Mean 3rd Qu. Max.

364 5110 32500 116000 103000 3050000

mean(peakDists)

[1] 116181

Answer 10:

library("RColorBrewer")

colours = colorRampPalette(rev(brewer.pal(9, "Blues")))(255)

heatmap.2(sampleDistMatrix, trace="none", col=colours)

See Figure 11.

9 Session Info

As last part of this document, we call the function sessionInfo, which reports the version numbers of R and all the
packages used in this session. It is good practice to always keep such a record as it will help to trace down what has
happened in case that an R script ceases to work because a package has been changed in a newer version.

R version 3.0.2 (2013-09-25)

Platform: x86_64-unknown-linux-gnu (64-bit)

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 31

Figure 11: The same heatmap as in Figure 7 but with better colours.

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

##

other attached packages:

[1] genefilter_1.44.0 RColorBrewer_1.0-5 gplots_2.12.1

[4] reactome.db_1.46.0 org.Hs.eg.db_2.10.1 RSQLite_0.11.4

[7] DBI_0.2-7 AnnotationDbi_1.24.0 Biobase_2.22.0

[10] parathyroidSE_1.0.4 DESeq2_1.2.5 RcppArmadillo_0.3.920.1

[13] Rcpp_0.10.6 GenomicRanges_1.14.3 XVector_0.2.0

[16] IRanges_1.20.5 BiocGenerics_0.8.0 knitr_1.5

##

loaded via a namespace (and not attached):

[1] annotate_1.40.0 BiocStyle_1.0.0 bitops_1.0-6 caTools_1.16

[5] codetools_0.2-8 digest_0.6.3 evaluate_0.5.1 formatR_0.10

[9] gdata_2.13.2 grid_3.0.2 gtools_3.1.1 highr_0.3

[13] KernSmooth_2.23-10 lattice_0.20-24 locfit_1.5-9.1 splines_3.0.2

[17] stats4_3.0.2 stringr_0.6.2 survival_2.37-4 tools_3.0.2

[21] XML_3.98-1.1 xtable_1.7-1

Differential analysis of RNA-Seq data at the gene level using the DESeq2 package 32

References

[1] Richard Bourgon, Robert Gentleman, and Wolfgang Huber. Independent filtering increases detection power for
high-throughput experiments. PNAS, 107(21):9546–9551, 2010.

	1 Introduction
	2 Input data
	2.1 Experiment data
	2.2 Collapsing technical replicates

	3 Running the DESeq2 pipeline
	3.1 Preparing the data object for the analysis of interest
	3.2 Running the pipeline
	3.3 Inspecting the results table
	3.4 Multiple testing
	3.5 Independent filtering
	3.6 Diagnostic plots

	4 Adding gene names
	5 Downstream analyses
	5.1 Gene set enrichment analysis
	5.2 Nearest peak to a differentially expressed gene

	6 Working with rlog-transformed data
	6.1 The rlog transform
	6.2 Sample distances
	6.3 Gene clustering

	7 Advanced Questions
	8 Solutions
	9 Session Info

