
Variant Calling with R/Bioconductor

Michael Lawrence

July 28, 2014

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Variant calls

Definition
I A variant call is a conclusion that there is a nucleotide

difference vs. some reference at a given position in an
individual genome or transcriptome,

I Usually accompanied by an estimate of variant frequency and
some measure of confidence.

Use cases

DNA-seq: variants

I Genetic associations with disease
I Mutations in cancer
I Characterizing heterogeneous cell populations

RNA-seq: allele-specific expression

I Allelic imbalance, often differential
I Association with isoform usage (splicing QTLs)
I RNA editing (allele absent from genome)

ChIP-seq: allele-specific binding

Variant calls are more general than genotypes
Genotypes make additional assumptions

I A genotype identifies the set of alleles present at each locus.
I The number of alleles (the ploidy) is decided and fixed.
I Most genotyping algorithms output genotypes directly, under a

blind diploid assumption and special consideration of SNPs
and haplotypes.

Those assumptions are not valid in general

I Non-genomic input (RNA-seq) does not represent a genotype.
I Cancer genome samples are subject to:

I Copy number changes
I Tumor heterogeneity
I Tumor/normal contamination

So there is a mixture of potentially non-diploid genotypes, and
there is no interpretable genotype for the sample

Typical variant calling workflow

FASTQ

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

gmapR

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

gmapR

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

Calling
GATK VarScan2

VariantTools

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A
A

A
C

Het

Hom-alt

Low
Freq

Error

POS REF ALT

2 T A
4 A G
8 C T

Typical variant calling workflow

Alignment
BWA GSNAP

FASTQ

Filters
Remove

PCR Dups
(Picard)

Realign
Indels

(GATK)

Tally
samtools bam_tally gmapR

gmapR

Calling
GATK VarScan2

VariantTools

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A

A
A

A
A

A
C

A
CT

T
T A

C G

T
T
T
T
T
T
T
T
T

A
A

A

T

T
T
T
T

C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G

T
T
T

T
T
T
T
T
T
T

T

A C
C
C
C
C
C
C
C
C

G
G
G
G
G
G
G
G
G
G

C

C
C
C
C

G
T
T
T
C

C
C
C

A

A
A

A
A
A

A
A

A

A
A

A
A

A
C

Het

Hom-alt

Low
Freq

Error

POS REF ALT

2 T A
4 A G
8 C T

Annotation Comparison

Sources of technical error

Errors can occur at each stage of data generation:
I Library prep
I Sequencing
I Alignment

Variant information for filtering

Information we know about each variant, and how it is useful:

Information Utility
Base Qualities Low quality indicates sequencing error
Read Positions Bias indicates mapping issues
Genomic Strand Bias indicates mapping issues
Genomic Position PCR dupes; self-chain, homopolymers
Mapping Info Aligner-dependent quality score/flags

Typical QC filters

10.1038/nbt.2514

These filters are heuristics
that aim to reduce the
FDR; however, they will
also generate false
negatives and are best
applied as soft filters
(annotations).

10.1038/nbt.2514

Whole-genome sequencing and problematic regions

I Many genomic regions are inherently difficult to interpret.
I Including homopolymers, simple repeats

I These will complicate the analysis with little compensating
benefit and should usually be excluded.

UCSC self-chain as indicator of mappability

I UCSC publishes the self-chain score as a generic indicator of
intragenomic similarity that is independent of any aligner

I About 6% of the genome fits this definition
I Virtually all (GSNAP) multi-mapping is in self-chains
I Lower unique coverage in self-chains

Aligner matters: coverage and mappability

BWA coverage

G
S

N
A

P
co

ve
ra

ge

0

50

100

150

200

0

50

100

150

200

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

FN

self−chained

FP

self−chained

TP

self−chained

unchained unchained unchained

FN FP TP

Aligning indels is error prone
Resolved by indel realignment

Homopolymers are problematic

Discard variants
over or next to
homopolymers
(>6nt)

FAIL

PASS

CTGCGAAAAAAAA

CTGCGAAAAAAAA

0.0

0.1

0.2

0.3

inside/adjacent outside

Relationship to Nearest Homopolymer

F
D

R

Effect of coverage extremes on frequencies

0

2

4

6

8

0.00 0.25 0.50 0.75 1.00

altDepth/totalDepth

D
en

si
ty

Coverage (1,40]

(40,120]

(120,Inf]
I Coverage sweet-spot

(40-120) matches expected
distribution.

I High coverage (>120) has
much lower frequencies than
expected; mapping error?

I Low coverage also different

Coverage extremes and self-chained regions

self−chained unchained

0.0

0.1

0.2

0.3

0.4
[0

,1
0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

[0
,1

0]

[1
0,

20
]

[2
0,

30
]

[3
0,

40
]

[4
0,

50
]

[5
0,

60
]

[6
0,

70
]

[7
0,

80
]

[8
0,

90
]

[9
0,

10
0]

[1
00

,In
f]

Coverage Bin

F
D

R

Downstream of variant calling

Calling
(vs reference)

GATK VarScan2

VariantTools

POS REF ALT

2 T A
4 A G
8 C T

Functional
Annotations

Genomic context,
coding consequences,
disease assocations

Annovar Ensembl VEP

VariantAnnotation

VariantFiltering

Two sample
comparisons

Mutation calling
RNA-editing

ensemblVEP

mutect strelka

VariantTools

Interpretation

VarScan2

Direct

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Tutorial setup
Data
Alignments over chr20 from the De Pristo et. al. (GATK paper)
dataset on the HapMap CEU individual NA12878.

Strategy

1. Generate tallies from the BAM file
2. Load pre-computer tallies (pileup) from the alignments.
3. Call/filter variants.
4. Execute basic dianostics, visualize variants in IGV.
5. Import published genotypes for NA12878 and check

concordance.
6. Interpret variants (functional consequences)

Load the tutorial package

library(VariantCallingTutorial)

The VariantTools package

VariantTools is a set of utilities for:
I Tallying alignments (via gmapR)
I Annotating tallies
I Filtering tallies into variant calls
I Exporting tallies to VCF (actually VariantAnnotation)
I Wildtype calling (for a specific set of filters)
I Sample ID verification via rudimentary genotyping

Default VariantTools algorithm (WGS)

At least two
alt reads

At least 4%
alt read fractionC

al
l

P
o

st
 F

ilt
er

Max Count
in Neighborhood

O
u

tp
u

t

In
p

u
t

Variants

T
al

ly
Unique Alignments

Mapping
Quality > 13

Require > 23
Base Quality

Mask Simple
Repeats

Ignore Picard
Duplicates

QA

dbSNP positions
not considered;

mostly useful for WGS

Not overlapping
HP (> 6nt)

Overlapping
ends in same pair

are clipped

Binomial Likelihood
Ratio Test:

p(var) = 0.2 /
p(error) = 0.001

How the tallies were (pre-)generated

We first prepare our parameters as a TallyVariantsParam object:

humanGmapGenome <- gmapR::GmapGenome("GRCh37")
tiles <- tileGenome(seqinfo(humanGmapGenome)["20"],

ntile=50)
param <- TallyVariantsParam(humanGmapGenome,

which = unlist(tiles),
mask = repeats,
indels = TRUE)

We mask out simple repeats and iterate over 50 tiles of chr20 (so
as not to exhaust memory).
Tallies are generated via the tallyVariants function:
bpp <- BiocParallel::MulticoreParam(2)
tallies <- tallyVariants(bam, param, BPPARAM = bpp)

Loading the cached tallies

The tallies were pre-generated and placed in the package.
data(tallies)

VRanges objects

I The tallies are represented as a VRanges object, defined by the
VariantAnnotation package

I All VariantTools filters and utilities operate on VRanges
I VRanges is an extension of GRanges for more formally

representing variant calls

VRanges components

I On top of GRanges, VRanges adds these fixed columns:
ref ref allele
alt alt allele
totalDepth total read depth
refDepth ref allele read depth
altDepth alt allele read depth
sampleNames sample identifiers
softFilterMatrix FilterMatrix of filter results
hardFilters FilterRules used to subset object

I Unused columns are filled with a single run of NAs (slots can
be either vector or Rle)

VRanges features

I Rough, lossy, two-way conversion between VCF and VRanges
I Matching/set operations by position and alt (match, %in%)
I Recurrence across samples (tabulate)
I Provenance tracking of applied hard filters
I Convenient summaries of soft filter results (FilterMatrix)
I Lift-over across genome builds (liftOver)
I VRangesList, stackable into a VRanges by sample
I All of the features of GRanges (overlap, etc)

Configure filters

VariantTools implements its filters within the FilterRules
framework from IRanges. The default variant calling filters are
constructed by VariantCallingFilters:
calling.filters <- VariantCallingFilters()

Post-filters are filters that attempt to remove anomalies from the
called variants:
post.filters <- VariantPostFilters()

Hard filter tallies into variant calls

We pass the filters to the callVariants function:
variants <- callVariants(tallies,

calling.filters,
post.filters)

Selecting variants by type

Extra the SNVs:
snvs <- variants[isSNV(variants)]

Extract the indels:
indels <- variants[isIndel(variants)]

Other helpers exist: isSV, isSubstitution, etc.

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Checking the coverage

densityplot(~ totalDepth(variants),
xlim=c(0, 2*median(totalDepth(variants))),
plot.points=FALSE, n=200)

totalDepth(variants)

D
en

si
ty

0.000

0.005

0.010

0.015

0.020

20 40 60 80 100

Checking the association of frequencies and coverage

variants$coverage.bin <- cut(totalDepth(variants), c(0, 20, 80, Inf))
densityplot(~ altDepth/totalDepth | coverage.bin,

as.data.frame(variants),
plot.points=FALSE, layout=c(3, 1),
xlab="variant frequency by coverage bin")

variant frequency by coverage bin

D
en

si
ty

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(0,20]

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(20,80]

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(80,Inf]

Indel proximity

Generate a window around the each indel:
indel.windows <- indels + 10

Find which SNVs overlap an indel window and summarize:
snvs$near.indel <- ifelse(snvs %over% indel.windows,

"over indel", "off indel")

variant frequency by coverage bin

D
en

si
ty

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0

off indel

0.0 0.2 0.4 0.6 0.8 1.0

over indel

Finding homopolymers

Find the homopolymers by forming an Rle on the chromosome
sequence:
chr20.sequence <- getSeq(Hsapiens, "chr20")
chr20.hp <- ranges(Rle(as.raw(chr20.sequence)))

A C G G T T T T T T T T C C A
A C G
1 1 2

T
8 2

C A
1

Homopolymer overlap
We consider homopolymers with length > 6:
chr20.hp <- chr20.hp[width(chr20.hp) > 6L]

Finally, we find the variants that overlap a homopolymer and
summarize the counts:
snvs$over.hp <- ifelse(ranges(snvs) %over% chr20.hp,

"over homopolymer",
"off homopolymer")

variant frequency by coverage bin

D
en

si
ty

0

2

4

6

0.0 0.5 1.0

off homopolymer

0.0 0.5 1.0

over homopolymer

Self-chain scores

We have included a GRanges of the self-chained regions for chr20
in the tutorial package:
data(selfChains, package="VariantCallingTutorial")

Exercise
I Find the overlap between the snvs object and the selfChains.

Store the result on snvs. Summarize it somehow.

Self-chain score as soft filter

We can formally flag variants by self-chain overlap without
discarding them from the dataset:
unchained.filter <-

FilterRules(list(unchained = function(x) {
x %outside% selfChains

}))
variants <- softFilter(variants, unchained.filter)
summary(softFilterMatrix(variants))

<initial> unchained <final>
229272 213733 213733

Visualizing putative FPs: IGV

IGV is an effective tool for exploring alignment issues and other
variant calling anomalies; SRAdb drives IGV from R.
To begin, we create a connection:
SRAdb::startIGV("lm")
sock <- SRAdb::IGVsocket()

Exporting our calls as VCF

IGV will display variant calls as VCF:
mcols(variants) <- NULL
sampleNames(variants) <- "NA12878"
vcf <- writeVcf(sort(variants),

"variants.vcf")
vcf <- tools::file_path_as_absolute(vcf)
vcf_gz <- paste0(tools::file_path_sans_ext(vcf), ".gz")
indexTabix(bgzip(vcf, vcf_gz, overwrite=TRUE),

format="vcf4")

We need to manually index the VCF, because VariantAnnotation
uses the bgz extension, while IGV expects gz.

Creating an IGV session

Create an IGV session with our VCF, BAMs and custom p53
genome:
bam <- tools::file_path_as_absolute(bam)
session <- SRAdb::IGVsession(c(bam, vcf_gz),

"session.xml",
"hg19")

Load the session:
SRAdb::IGVload(sock, session)

Browsing regions of interest

IGV will (manually) load BED files as a list of bookmarks:
rtracklayer::export(variants, "roi.bed")

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Goals/Motivation

I Assume we want to compare the VariantTools calls with those
from the Illumina Platinum Genome for NA12878

I We need to:
1. Import the Illumina calls from VCF (in a scalable fashion)
2. Perform basic QC/EDA on the variants
3. Filter out suspect and uninteresting variants

VCF: Variant Call Format

I The Variant Call Format (VCF) is the standard file format for
storing variant calls.

I Every VCF file consists of two parts:
I Header describing the format/provenance
I Actual variant records, describing one or more alternate alleles

(SNV, indel, etc) at a particular position in the genome.
I Each variant record contains information at four levels:

I The position
I A particular alternate allele at the position,
I A particular sample at the position
I A particular combination of alternate allele and sample (usually

includes genotype).

VCF fields

At a lower level, each VCF record consists of the following
components:

CHROM The chromosome on which the variant is located,
POS The variant (start) position on CHROM,
ID A string identifier, such as the dbSNP ID,
REF The reference allele,
ALT The alternate allele,

QUAL Some notion of quality for entire record,
FILTER A list of filters that the variant failed to pass,
INFO A list of arbitrary fields describing the record or a

specific alt allele,
GENO A set of columns, one per sample, each a list of

sample-specific fields, and each field may itself be a
list, perhaps with one value per alt.

Previewing a VCF file

I For reading a VCF, we rely on the VariantAnnotation package.
I Always start by checking the header of an unfamiliar VCF file,

so that we can:
I Check the integrity of the data and
I Determine which parts need to be imported

vcf.file <- NA12878_pg.chr20.vcf.bgz
header <- scanVcfHeader(vcf.file)
header

class: VCFHeader
samples(1): NA12878
meta(7): fileformat ApplyRecalibration ... source fileDate
fixed(1): FILTER
info(22): AC AF ... culprit set
geno(8): GT GQX ... PL VF

Inspecting the VCF header

The most important information is usually the sample-specific
values, which typically include the genotype, as in this case:
geno(header)

DataFrame with 8 rows and 3 columns
Number Type Description

<character> <character> <character>
GT 1 String GT Genotype
GQX 1 Integer GQX Min genotype quality...
AD . Integer AD Allelic depths
DP 1 Integer DP Approximate read depth
GQ 1 Float GQ Genotype Quality
MQ 1 Integer MQ RMS Mapping Quality
PL G Integer PL Likelihoods for each alt
VF 1 Float VF Variant frequency

Detecting gVCF

We also notice something interesting in the INFO header:
info(header)["END",]

DataFrame with 1 row and 3 columns
Number Type Description

<character> <character> <character>
END 1 Integer End position of the region...

The presence of the END INFO field indicates that we are actually
dealing with a special type of VCF called a gVCF, where "g" stands
for "genomic"; more later.

Exercises

1. By convention, which accessor would you use to retrieve the
meta component of the VCFHeader object?

2. What is the meaning of the AD and DP fields in the geno()
component?

Full VCF import

I We now load the VCF data into R using readVcf():
vcf <- readVcf(vcf.file, genome="hg19")

I We pass a genome identifier to track provenance and ensure
data integrity.

I Loading the full file consumes a lot of memory, much of which
may be wasted if we are only interested in one region, or some
subset of the fields

I This is the size for chr20:
print(object.size(vcf), unit="auto")

300 Mb

I But for the genome, this would be closer to 12 GB, which is
beyond the memory capacity of most laptops

Restricted VCF import

I Restricted import is useful when:
I We need only a subset of the data
I We want to process all of the data in an interative fashion

I readVcf supports multiple modes of restriction:
I Range-based for selecting a region (vcfWhich)
I Field-based for skipping irrelevant fields (vcfWhat)
I Row chunk-based for streaming (yieldSize)

Restricting by genomic range

I Assume we had a VCF for the whole genome and we want to
restrict it to chr20

I First, we obtain the chr20 range:
ranges.chr20 <- as(seqinfo(Hsapiens)["chr20"],

"GRanges")

I And pass the range of interest to readVcf():
param <- ScanVcfParam(which=ranges.chr20)
vcf.chr20 <- readVcf(vcf.file, genome="hg19",

param=param)

Exercises

1. How would we have restricted to chr19 instead of chr20?
2. Let us assume that we are not interested in any of the info()

fields in the file. If we exclude them from the import
operation, we can save valuable time and memory. See
?ScanVcfParam and determine how to do this.

VCF objects
The readVcf() function returns a VCF object, a derivative of
SummarizedExperiment that fully and formally represents the
complexity of the VCF file.
rowData(vcf) GRanges object holding the positions and fixed,

position-level columns
colnames(mcols(rowData(vcf)))

[1] "paramRangeID" "REF" "ALT" "QUAL" "FILTER"

info(vcf) DataFrame of position- and alt-level fields
head(colnames(info(vcf)))

[1] "AC" "AF" "AN"
[4] "DP" "QD" "BLOCKAVG_min30p3a"

geno(vcf) Sample-specific values, including the genotype
names(geno(vcf))

[1] "GT" "GQX" "AD" "DP" "GQ" "MQ" "PL" "VF"

VCF subsetting/extraction

We can see that this particular VCF includes wildtype calls, while
we are only interested in the variants, so we subset the object:

illumina_variants <- vcf[geno(vcf)$GT[,1] != "0/0",]

Note that we use matrix-style indexing, because VCF models the
data as a variant by sample matrix.

Selection by variant type
Of the fixed columns, the most important is the ALT column, which
stores the alternate allele(s) for each record.
head(alt(illumina_variants))

DNAStringSetList of length 150402
[[1]] T
[[2]] CT
[[3]] C
[[4]] C
[[5]] T
[[6]] C
...
<150392 more elements>

Restrict to SNVs using the isSNV helper:
selectSNVs <- isSNV(illumina_variants)
illumina_snvs <- subset(illumina_variants, selectSNVs)

Expanding the VCF: one alt per record

VCF supports multiple alts per row:
class(alt(illumina_snvs))

[1] "DNAStringSetList"
attr(,"package")
[1] "Biostrings"

But it is easier to reason on data with one alt per row, which we
can achieve with expand:
illumina_snvs <- expand(illumina_snvs)
class(alt(illumina_snvs))

[1] "DNAStringSet"
attr(,"package")
[1] "Biostrings"

Exercises

1. Obtain the AD and/or DP components of the snvs object.
2. One could calculate the allele fraction from the AD and DP

components. However, some variant callers, including GATK,
filter the DP component differently from the counts in AD, so
the two values are incompatible. Luckily, this file contains the
alt frequency as a special genotype field; which one is it?

3. How much memory have we saved through this filtering? Hint:
see the usage of object.size() in the previous section.

Filtering a VCF file: filterVcf

I After filtering, the VCF object is much smaller
print(object.size(illumina_snvs), unit="auto")

37.2 Mb

I The reduction is sufficient for us to operate on the calls from
the entire genome, not just chr20.

I In general, we want to apply the filter to the entire file,
without loading all of the data into memory.

I The filterVcf function steams over a VCF file, writing out
the records that pass two types of filters:
prefilters Applied to the raw text of this file (faster but

riskier), and
filters Applied to the data parsed as a VCF file.

Filtering for the called SNVs

We filter out non-variant sites using a prefilter:
prefilters <-

FilterRules(list(onlyVariants=function(text) {
!grepl("0/0", text, fixed=TRUE)

}))

We also need to restrict to SNVs, which is sufficiently complicated
to warrant filtering after parsing:
filters <- FilterRules(list(onlySNVs=isSNV))

We combine both of the filters and drop the unneeded info
columns in a single step:
filterVcf(vcf.file, genome="hg19", "snvs.vcf", index=TRUE,

prefilters=prefilters, filters=filters,
param=ScanVcfParam(info=NA))

Exercises

1. What if we wanted to create a separate file with all of the
indels? Hint: see ?isIndel.

Accessing included QC filters
I The filt() component marks which QC filters failed a variant
I Variants that pass all QC filters are labeled "PASS"
I Here, we list the descriptions of the filter codes from the

header:

fixed(header(illumina_snvs))$FILTER

DataFrame with 9 rows and 1 column
Description
<character>
LowGQX Locus GQX < 30.0000 or not present
LowQD Locus QD < than 2.0000
LowMQ Site MQ < than 20.0000
IndelConflict Region has conflicting indel calls
MaxDepth Site depth > 3.0x the mean depth
SiteConflict Genotype conflicts with proximal indel
... ...

Summarizing the QC filters

table(unlist(strsplit(filt(illumina_snvs), ";")))

IndelConflict LowGQX
35 11020

LowMQ LowQD
1055 19583

MaxDepth PASS
25 68626

SiteConflict ...
785 ...

Restricting by the QC filters

For the purposes of this tutorial, we will restrict to the "PASS"
variants:
passed <- grep("PASS", filt(illumina_snvs), fixed=TRUE)
illumina_snvs <- illumina_snvs[passed,]

After that filter, there are very few positions with outlying coverage
values:
rowData(illumina_snvs)$coverage.bin <-

cut(geno(illumina_snvs)$DP, c(0, 20, 80, Inf))
table(rowData(illumina_snvs)$coverage.bin)

(0,20] (20,80] (80,Inf]
63 68528 35

Exercises

1. Use the patterns presented above to determine which specific
filters were most responsible for removing the group of low
frequency variants.

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Goals

I Compare the output from VariantTools from the Illumina
"platinum" genotypes for the same individual (NA12878)

I Intersect the variant sets using VRanges to determine the FP
and FN calls for VariantTools

I Compare the variants in terms of their frequencies

Coercing to VCF to VRanges

Coercion

illumina_vr <- as(illumina_snvs, "VRanges")

Rectify differences in reference genome

seqlevelsStyle(illumina_vr) <- "NCBI"
illumina_vr <- dropSeqlevels(illumina_vr, "MT")
genome(illumina_vr) <- "GRCh37"

Intersecting variant sets

Sensitivity

illumina_vr$in.vt <- illumina_vr %in% snvs
mean(illumina_vr$in.vt)

[1] 0.9654358

Specificity

snvs$in.illumina <- snvs %in% illumina_vr
mean(snvs$in.illumina)

[1] 0.3085657

Compare variant frequencies

We merge the variant frequencies from the VariantTools set into
the Illumina set:
illumina_vr$vt.freq <-

altFraction(snvs)[match(illumina_vr, snvs)]

Now we can make a scatterplot:
xyplot(vt.freq ~ altFraction(illumina_vr),

as.data.frame(illumina_vr),
panel=panel.smoothScatter,
xlab="Illumina frequency",
ylab="VariantTools frequency")

Compare variant frequencies

Illumina frequency

V
ar

ia
nt

To
ol

s
fr

eq
ue

nc
y

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Exercises

1. See ?softFilterMatrix and ?called to subset broad.vr to
the variants that passed all filters.

2. Make a density plot of the variant frequencies from broad.vr.
3. What percentage of the Broad calls were not called by

Illumina?

Manipulating gVCF runs

I This file is actually a gVCF file, where the "g" stands for
genotype

I The extended format supports storing runs that indicate
confidence in the WT genotype

I For the unique VariantTools calls, we can retrieve Illumina’s
confidence that the positions are indeed wildtype

I We begin by converting the positions in the VCF to runs
runs <- vcf[!is.na(info(vcf)$END),]
end(rowData(runs)) <- info(runs)$END

Exercises

1. Assuming that a "PASS" value for filt(runs) indicates
wildtype and no-call otherwise, what percentage of chr20 was
callable?

2. For the unique VariantTools variants found in a previous
exercise, how many of them were called wildtype vs. no-call by
Illumina?

False negatives: which filter to blame?

Apply the calling filters to our FN and summarize the results:
calling.filters <- hardFilters(snvs)[3:5]
tallies <- resetFilter(tallies)
tallies <- softFilter(tallies, calling.filters,

serial=TRUE)
fn <- tallies[tallies %in% subset(illumina_vr, !in.vt)]
t(summary(softFilterMatrix(fn)))

<initial> readCount likelihoodRatio avgNborCount <final>
1052 1036 1035 0 0

Outline

Introduction

Calling variants with VariantTools

Diagnosing variant calls

Importing and manipulating VCF data

Comparing variant sets

Interpreting variants

Genomic context

locateVariants() annotates variants with overlapping genes.

gene.models <- TxDb.Hsapiens.UCSC.hg19.knownGene
snvs <- keepSeqlevels(snvs, "20")
seqlevelsStyle(snvs) <- "UCSC"
genome(snvs) <- "hg19"
locations <- locateVariants(snvs, gene.models,

CodingVariants())

The return value, locations, is a GRanges with these columns:

colnames(mcols(locations))

[1] "LOCATION" "QUERYID" "TXID" "CDSID"
[5] "GENEID" "PRECEDEID" "FOLLOWID"

Munging the genomic context

I The QUERYID column maps each row in locations to a row in
the input (only a subset of the variants are over a gene):

snvs$coding.tx <- NA_integer_
snvs$coding.tx[locations$QUERYID] <- locations$TXID

I We can use annotations to retrieve the gene symbols:

gene_ids <- sub("GeneID:", "",
locations$GENEID[!is.na(locations$GENEID)])

syms <- unlist(mget(gene_ids,
org.Hs.egSYMBOL,
ifnotfound=NA))

locations$SYMBOL[!is.na(locations$GENEID)] <- syms

Exercises

1. Merge the coding$SYMBOL back into the original snvs object.
2. We found the variants that overlap a coding region; how would

we find those inside a promoter?

Coding consequences

predictCoding() predicts coding consequences:
coding <- predictCoding(snvs, gene.models, Hsapiens,

varAllele = DNAStringSet(alt(snvs)))

The returned object, coding, is a VRanges object with a number of
additional metadata columns:
setdiff(colnames(mcols(coding)), colnames(mcols(snvs)))

[1] "varAllele" "CDSLOC" "PROTEINLOC" "QUERYID" "TXID"
[6] "CDSID" "GENEID" "CONSEQUENCE" "REFCODON" "VARCODON"

[11] "REFAA" "VARAA"

Summarizing the consequences

We tabulate the consequence codes:
table(coding$CONSEQUENCE)

nonsense nonsynonymous synonymous
66 3651 1259

Exercises

1. Cross tabulate the ref and alt amino acids.
2. Find the variant that occurred in the SOX12 gene.

	Introduction
	Calling variants with VariantTools
	Diagnosing variant calls
	Importing and manipulating VCF data
	Comparing variant sets
	Interpreting variants

