
R / Bioconductor for Everyone — Exercises

Martin Morgan (mtmorgan@fhcrc.org)
Fred Hutchinson Cancer Research Center

Seattle, WA

30 July 2014

Abstract

This lab provides an introduction to R / Bioconductor for high-throughput sequence analysis. It is designed for
those who have some but not a lot of familiarity with R and Bioconductor. The first part of the lab focuses on R
data types, functions, classes, methods, the package and help systems, and the Bioconductor web site. The second
part of the lab takes a quick tour of essential packages, classes, and methods for sequence analysis. We will make
brief stops at GenomicRanges, Biostrings, GenomicFeatures, ShortRead , Rsamtools, rtracklayer , AnnotationDbi , and
other packages of interest to participants.

Contents

1 R / Bioconductor 1

2 Sequence analysis 4
2.1 Typical data and operations . 4
2.2 Large data . 6

1 R / Bioconductor

Exercise 1
This exercise uses data describing 128 microarray samples as a basis for exploring R functions. Covariates such as age,
sex, type, stage of the disease, etc., are in a data file pData.csv.

The following command creates a variable pdataFiles that is the location of a comma-separated value (‘csv’) file to be
used in the exercise. A csv file can be created using, e.g., ‘Save as...’ in spreadsheet software.

pdataFile <- "/home/martin/RBiocForEveryone/pData.csv"

Input the csv file using read.table, assigning the input to a variable pdata. Use dim to find out the dimensions (number
of rows, number of columns) in the object. Are there 128 rows? Use names or colnames to list the names of the columns
of pdata. Use summary to summarize each column of the data. What are the data types of each column in the data
frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the data frame using [[or $. Pause to explain
to your neighbor why this subset operation works. Since a data frame is a list, use sapply to ask about the class of each
column in the data frame. Explain to your neighbor what this produces, and why.

Use table to summarize the number of males and females in the sample. Consult the help page ?table to figure out
additional arguments required to include NA values in the tabulation.

1

mailto:mtmorgan@fhcrc.org
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html

R / Bioconductor for Everyone — Exercises 2

The mol.biol column summarizes molecular biological attributes of each sample. Use table to summarize the different
molecular biology levels in the sample. Use %in% to create a logical vector of the samples that are either BCR/ABL or
NEG. Subset the original phenotypic data to contain those samples that are BCR/ABL or NEG.

After subsetting, what are the levels of the mol.biol column? Set the levels to be BCR/ABL and NEG, i.e., the levels in
the subset.

One would like covariates to be similar across groups of interest. Use t.test to assess whether BCR/ABL and NEG

have individuals with similar age. To do this, use a formula that describes the response age in terms of the predictor
mol.biol. If age is not independent of molecular biology, what complications might this introduce into subsequent
analysis? Use

Solution: Here we input the data and explore basic properties.

pdata <- read.table(pdataFile)

dim(pdata)

[1] 128 21

names(pdata)

[1] "cod" "diagnosis" "sex" "age" "BT"

[6] "remission" "CR" "date.cr" "t.4.11." "t.9.22."

[11] "cyto.normal" "citog" "mol.biol" "fusion.protein" "mdr"

[16] "kinet" "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"

A data frame can be subset as if it were a matrix, or a list of column vectors.

head(pdata$sex) # same as pdata[,"sex"], pdata[["sex"]]

[1] M M F M M M

Levels: F M

sapply(pdata, class)

cod diagnosis sex age BT remission

"factor" "factor" "factor" "integer" "factor" "factor"

CR date.cr t.4.11. t.9.22. cyto.normal citog

"factor" "factor" "logical" "logical" "logical" "factor"

mol.biol fusion.protein mdr kinet ccr relapse

"factor" "factor" "factor" "factor" "logical" "logical"

transplant f.u date.last.seen

"logical" "factor" "factor"

The number of males and females, including NA, is

table(pdata$sex, useNA="ifany")

##

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex, useNA="ifany")).

The mol.biol column contains the following samples:

with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

R / Bioconductor for Everyone — Exercises 3

A logical vector indicating that the corresponding row is either BCR/ABL or NEG is constructed as

ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with your neighbor what sum does, and
why the answer is the same as the number of TRUE values in the result of the table function).

table(ridx)

ridx

FALSE TRUE

17 111

sum(ridx)

[1] 111

The original data frame can be subset to contain only BCR/ABL or NEG samples using the logical vector ridx that we
created.

pdata1 <- pdata[ridx,]

The levels of each factor reflect the levels in the original object, rather than the levels in the subset object, e.g.,

levels(pdata$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with the desired levels.

pdata1$mol.biol <- factor(pdata1$mol.biol)

table(pdata1$mol.biol)

##

BCR/ABL NEG

37 74

To ask whether age differs between molecular biology types, we use a formula age ~ mol.biol to describe the relationship
(‘age as a function of molecular biology’) that we wish to test

with(pdata1, t.test(age ~ mol.biol))

##

Welch Two Sample t-test

##

data: age by mol.biol

t = 4.817, df = 68.53, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.135 17.224

sample estimates:

mean in group BCR/ABL mean in group NEG

40.25 28.07

This summary can be visualize with, e.g., the boxplot function

not evaluated

boxplot(age ~ mol.biol, pdata1)

Molecular biology seems to be strongly associated with age; individuals in the NEG group are considerably younger than
those in the BCR/ABL group. We might wish to include age as a covariate in any subsequent analysis seeking to relate
molecular biology to gene expression.

R / Bioconductor for Everyone — Exercises 4

2 Sequence analysis

2.1 Typical data and operations

Exercise 2
The purpose of this exercise is to explore BAM files and the data they contain. We’ll extract the sequences and qualities
of aligned reads, and draw simple plots to illustrate their properties.

a. Attach the pasillaBamSubset experiment data package (containing a subset of reads from [1], as described in the
package help page). Attach the Rsamtools (for accessing BAM files) and ShortRead (for manipulating short reads)
packages.

b. Use ScanBamParam to create an object that restricts the information extracted from the BAM file. Restrict
the information using readGAlignments to select reads that align to the plus strand (isMinusStrand=FALSE).
readGAlignments inputs alignment information; also arrange to input sequence and quality information using
what=c(’seq’, ’qual’).

c. Input the sequences and qualities using readGAlignments, providing the file path returned by untreated1 chr4 (a
‘convenience’ function from the pasillaBamSubset package) and the ScanBamParam object created in the previous
question.

d. Use alphabetByCycle to summarize nucleotide use by cycle; plot the relationship between cycle and use. Where
you expecting this? What is going on?

e. Coerce the quality scores to a matrix, and summarize the distribution of qualities across cycle. Is this expected?

Solution: Here we attach the data and other packages.

library(pasillaBamSubset)

library(GenomicRanges) # readGAlignments

library(ShortRead) # alphabetByCycle

Now establish the ScanBamParam object to restrict information extracted from the BAM file.

flag <- scanBamFlag(isMinusStrand=FALSE)

param <- ScanBamParam(what=c("seq", "qual"), flag=flag)

Input the sequences and qualities using readGAlignments.

fl <- untreated1_chr4()

res <- readGAlignments(fl, param=param)

Summarize nucleotide use by cycle and plot the result (Figure 1, left).

Convert encoding quality scores to a numeric matrix, and summarize these as boxplots, one for each cycle (column) of
the matrix (Figure 1, right).

Exercise 3
The purpose of this exercise is to count the number of reads overlapping genes. This is a typical first step in an RNA-seq
differential expression analysis.

a. Annotations (gene models) can come from different sources. We’ll use a pre-packaged source here; a later exercise
retrieves similar information from a GFF file. Attach the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation
package, and use exonsBy to retrieve all exons, grouped by gene. Subset the result to contain just those annotations
relevant to chromosome 4.

b. Create a character vector of file paths, using the helper functions untreated1 chr4 and untreated3 chr4. Name
the vector with an abbreviated name derived from the file name, and use this to invoke BamFileList, creating a
list of paths to files that are known to be BAM files.

c. Use summarizeOverlaps to count the number of reads in each region of interest. The RNA-seq protocol was
not strand aware, so choose ignore.strand=TRUE. The object returned by summarizeOverlaps is an instance
of class SummarizedExperiment. Explore it, and the counts that have been generate.

http://bioconductor.org/packages/release/data/experiment/html/pasillaBamSubset.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/data/experiment/html/pasillaBamSubset.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html

R / Bioconductor for Everyone — Exercises 5

0 20 40 60

20
00

0
30

00
0

40
00

0
50

00
0

Cycle

C
ou

nt

A
C
G
T

1 5 9 13 18 23 28 33 38 43 48 53 58 63 68 73

5
10

15
20

25
30

35

Cycle

Q
ua

lit
y

Figure 1: Nucleotide use (left) and base quality (right) in aligned reads.

d. Plot the counts in the two samples, perhaps transforming the counts with asinh (a log-like transform that deals
with 0’s better).

e. As an additional exercise, use the rtracklayer package to retrieve and parse a GFF file containing similar annotations.
How would this source of annotation tie into the work flow we have just performed?

Solution: Load the annotation package, extract exons grouped by gene, and select just those genes on chromosome 4.

library(TxDb.Dmelanogaster.UCSC.dm3.ensGene) # genome coordinates

exByGn <- exonsBy(TxDb.Dmelanogaster.UCSC.dm3.ensGene, "gene")

chr4 <- exByGn[all(seqnames(exByGn) == "chr4")]

Create a BamFileList pointing to the BAM files we want to count.

fls <- c(untreated1_chr4(), untreated3_chr4())

names(fls) <- sub("_chr4.bam", "", basename(fls))

bfl <- BamFileList(fls)

Count the number of reads overlapping each gene using summarizeOverlaps, remembering to the ignore strand to
which the read aligns (why?).

counts <- summarizeOverlaps(chr4, bfl, ignore.strand=TRUE)

head(assay(counts))

untreated1 untreated3

FBgn0002521 669 409

FBgn0004607 13 12

FBgn0004859 382 198

FBgn0005558 8 22

FBgn0005561 7 11

FBgn0005666 491 276

Plot the results (Figure 2). Why are the points generally below the diagonal? Why do they have a funnel shape, with
lots of variability between samples at low counts but very predictable numbers at high counts?

R / Bioconductor for Everyone — Exercises 6

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12

0
2

4
6

8
10

asinh(counts), chr4

untreated1

un
tr

ea
te

d3

Figure 2: Count of reads overlapping genes on chr4.

The following illustrates an alternative source of annotation information. The annotations are in a GTF file on the
Ensembl web site. We download them to our local disk, then use rtracklayer ’s import to parse the file to a GRanges
instance. We subset this to contain relevant information, then split the GRanges into a GRangesList, based on the
gene id column extracted from the GFF file. This could then be used in summarizeOverlaps, as above and without
further change.

library(rtracklayer) # import gff

fl <- paste0("ftp://ftp.ensembl.org/pub/release-62/", "gtf/drosophila_melanogaster/",

"Drosophila_melanogaster.BDGP5.25.62.gtf.gz")

gffFile <- file.path(tempdir(), basename(fl))

download.file(fl, gffFile)

gff0 <- import(gffFile)

idx <- gff0$source == "protein_coding" & gff0$type == "exon" & seqnames(gff0) == "4"

gff1 <- gff0[idx]

chr4.gff <- split(gff1, mcols(gff1)$gene_id)

2.2 Large data

Counting overlaps represents a typical operation on BAM files. It involves accessing several large files for moderate
amounts of data, then summarizing that data to a relatively compact representation (a table of counts). We sketch how
to efficiently perform this type of operation in R. To do so we suppose a counting function that accepts a GAlignments

object representing the data, and a GRanges (or GRangesList) object representing the regions of interest over which
counts are required.

counter <-

function(aln, roi)

{
strand(aln) <- "*" # strand-neutral protocol

hits <- findOverlaps(aln, roi)

keep <- which(countQueryHits(hits) == 1)

cnts <- countSubjectHits(hits[queryHits(hits) %in% keep])

http://bioconductor.org/packages/release/bioc/html/rtracklayer.html

R / Bioconductor for Everyone — Exercises 7

setNames(cnts, names(roi))

}

This function is written using efficient R code. A first pass at using the counter might use sapply and a helper function
to iterate over each file

countFile <-

function(fl, roi)

{
open(fl); on.exit(close(fl))

aln <- readGAlignments(fl)

counter(aln, roi)

}
count0 <- sapply(bfl, countFile, chr4)

head(count0)

untreated1 untreated3

FBgn0002521 669 409

FBgn0004607 13 12

FBgn0004859 382 198

FBgn0005558 8 22

FBgn0005561 7 11

FBgn0005666 491 276

BAM files can be large, so it might pay to iterate through each in ‘chunks’ that are large but do not consume all available
memory. The pattern might look like

countInChunks <-

function(fl, roi)

{
yieldSize(fl) <- 1000000 # chunks of size 1 million

open(fl); on.exit(close(fl))

count <- integer(length(range)) # initial count vector

while (length(aln <- readGAlignments(fl)))

count <- count + counter(aln, roi)

count

}
count1 <- sapply(bfl, countInChunks, chr4)

identical(count0, count1)

[1] TRUE

Chunking does not usually add a significant performance cost, but requires an algorithm where successive chunks can be
calculated independently (as with counting overlaps) and aggregated easily (here simply adding successive count vectors).

Chunking allows memory use to be adjusted to different scenerios, and in particular opens the door to iterating
through large files in parallel, with each processor associated with one file. This is easily implemented in R, using
the parallel::mclapply function (which acts like lapply but assigns elements of its first argument to different pro-
cessors), and base::simplify2Array.

library(parallel)

options(mc.cores=detectCores()) # use all cores for parallel evaluation

mcsapply <- function(...) simplify2array(mclapply(...))

count2 <- mcsapply(bfl, countInChunks, chr4)

identical(count0, count2)

[1] TRUE

R / Bioconductor for Everyone — Exercises 8

This strategy is implemented in summarizeOverlaps.

References

[1] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R. Graveley.
Conservation of an RNA regulatory map between Drosophila and mammals. Genome Research, pages 193–202, 2011.
URL: http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110, doi:10.1101/gr.108662.110.

http://genome.cshlp.org/cgi/doi/10.1101/gr.108662.110
http://dx.doi.org/10.1101/gr.108662.110

	1 R / Bioconductor
	2 Sequence analysis
	2.1 Typical data and operations
	2.2 Large data

