
Hypothesis Testing

Wolfgang Huber, EMBL

Karl Popper (1902-1994)

Logical asymmetry between
verification and falsifiability.
!
No number of positive outcomes at the
level of experimental testing can
confirm a scientific theory, but a single
counterexample is logically decisive: it
shows the theory is false.

Step 1: Set up a model of reality: null hypothesis, H0

Step 2: Do an experiment, collect data

Step 3: Compute the probability of the data in this model

Step 4: Make a decision: reject model if the computed
probability is deemed to small
H0: a model of reality that lets us make specific predictions of
how the data should look like. The model is stated using the
mathematical theory of probability.

Examples of null hypotheses:
• The coin is fair
• The new drug is no better or worse than a  
placebo
• The observed CellTitreGlo signal for my  
RNAi-treated cells is no different from that  
of the negative controls

The four steps of hypothesis testing

Toss a coin a certain number of times ⇒

If the coin is fair, then heads should appear half of the
time (roughly).
!
But what is “roughly”? We use combinatorics / probability
theory to quantify this.
!
For example, in 12 tosses with success rate p, the
probability of seeing exactly 8 heads is

Example

Binomial Distribution
H0 here: p = 0.5. Distribution of number of heads:

P(Heads ≥ 10) = 0.0193 P(Heads ≤ 2) = 0.0193

0 1 2 3 4 5 6 7 8 9 10 11 12

n

p

0.
00

0.
05

0.
10

0.
15

0.
20

Significance Level

If H0 is true and the coin is fair (p=0.5), it is improbable to
observe extreme events such as more than 9 heads

0.0193 = P(Heads ≥ 10 | H0) = “p-value”

If we observe 10 heads in a trial, the null hypothesis is likely
to be false.
An often used (but entirely arbitrary) cutoff is 0.05
(“significance level α”): if p<α, we reject H0

!
Two views:
Strength of evidence for a certain (negative) statement
Rational decision support

Statistical Testing Workflow

1. Set up hypothesis H0 (that you want to reject)

2. Find a test statistic T that should be sensitive to
(interesting) deviations from H0

3. Figure out the null distribution of T, if H0 holds

4. Compute the actual value of T for the data at
hand

5. Compute p-value = the probability of seeing that
value, or more extreme, in the null distribution.

6. Test Decision: Rejection of H0 - yes / no ?

not rejected
 (‘negative’)

rejected
(‘positive’)

!
H

!
True negative
(specificity)

!
False Positive

Type I error
α

!
!

H

False Negative

Type II error
β

True Positive
(sensitivity)

Truth

Decision

Errors in hypothesis testing

t-statistic (1908, William Sealy
Gosset, pen-name “Student”)
!
!
!
!
compare to a fixed value μ0
!
Without n: z-score
With n: t-statistic
!
If data are normal, null distribution
can be computed: “t-distribution”,
with a parameter called “degrees of
freedom”, equal to n-1

One sample t-test

σ

One sample t-test example
Consider the following 10 data points:
-0.01, 0.65, -0.17, 1.77, 0.76, -0.16, 0.88, 1.09, 0.96, 0.25
!
We are wondering if these values come from a distribution
with a true mean of 0: one sample t-test
!
The 10 data points have a mean of 0.60 and a standard
deviation of 0.62.
!
From that, we calculate the t-statistic:

t = 0.60 / 0.62 * 101/2 = 3.0

10 observations → compare observed t-statistic to the t-
distribution with 9 degrees of freedom
!
!
!
!
!
!
!
!
!
!
p-value: P(|T9| ≧ 3.0) = 0.015
In R: pt(3.0, df=9, lower.tail=FALSE)

p-value and test decision

-6 -4 -2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

t

p(
t)

One-sided vs two-sided test

One-sided
 e.g. H0: µ<0

Two-sided
 e.g. H0: µ=0

5%

2.5%2.5%

Avoid fallacy

The p-value is the probability that the observed data
could happen, under the condition that the null
hypothesis is true.

It is not the probability that the null hypothesis is
true.

Absence of evidence ⧧ evidence of absence

Two samples t-test
Do two different samples have the same mean ?
!
!
!
!
!
y and x are the average of the observations in the two
populations
!
SE is the standard error for the difference
!
If H0 is correct, test statistic follows a t-distribution with
n+m-2 degrees of freedom
(n, m: number of observations in each sample)

t-test in R

x,y: Data (only x needs to be specified for one-group
test, specify target mu instead)

paired: paired (e.g. repeated measurements on the
same subjects) or unpaired

var.equal: Can the variances in the two groups assumed
to be equal?
alternative: one- or two-sided test?

•

•

•

•

Comments and pitfalls

The derivation of the t-distribution assumes that the
observations are independent and that they follow a
Normal distribution.

Deviation from Normality - heavier tails: test still
maintains type-I error control, but may no longer
have optimal power.

Options: Wilcoxon test, permutation tests

If the data are dependent, then p-values will likely
be totally wrong (e.g., for positive correlation, too
optimistic).

different data distributions – independent case

different data distributions – correlated case

xkcd

xkcd

The Multiple Testing Problem

When performing a large number of tests, the type I error
goes up: for α=0.05 and performing n tests, the
probability of no false positive result is:

!

!
!
⇒ The larger the number of tests performed, the higher

the probability of a false rejection!

Multiple Testing Examples

Many data analysis approaches in genomics rely on item-

by-item (i.e. multiple) testing:

!
Microarray or RNA-Seq expression profiles of “normal” vs

“perturbed” samples: gene-by-gene

ChIP-chip: locus-by-locus

RNAi and chemical compound screens

Genome-wide association studies: marker-by-marker

QTL analysis: marker-by-marker and trait-by-trait

False positive rate and false
discovery rate

FPR: fraction of FP among
all genes (etc.) tested
!
FDR: fraction of FP among
hits called
!
Example:
20,000 genes, 100 hits, 10 of
them wrong.
!
FPR: 0.05%
FDR: 10%

Experiment-wide type I error rates

Slide 4

Family-wise error rate (FWER): P(V > 0), the probability of one or more

false positives. For large m0, this is difficult to keep small.

!
False discovery rate (FDR): E[V / max{R,1}], the expected fraction of

false positives among all discoveries.

Not
rejected Rejected Total

True null
hypotheses

U V m

False null
hypotheses

T S m

Total m – R R m

88 F. Hahne, W. Huber

Histogram of tt$p.value

tt$p.value

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20
0

40
0

60
0

Histogram of ttrest$p.value

ttrest$p.value

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

60
10
0

Figure 6.2. Histograms of p-values. Right: after nonspecific filtering. Left: filtered
nonspecific probe sets only.

> table(ALLsfilt$mol.biol)
BCR/ABL NEG

37 42
> tt = rowttests(ALLsfilt, "mol.biol")
> names(tt)
[1] "statistic" "dm" "p.value"

Take a look at the histogram of the resulting p-values in the left panel
of Figure 6.2.

> hist(tt$p.value, breaks=50, col=lcol1)

We see a number of probe sets with very low p-values (which correspond
to di�erentially expressed genes) and a whole range of insignificant p-values.
This is more or less what we would expect. The expression of the majority
of genes is not significantly shifted by the BCR/ABL mutation. To make
sure that the nonspecific filtering did not throw away an undue amount of
promising candidates, let us take a look at the p-values for those probe sets
that we filtered out before. We can compute t-statistics for them as well
and plot the histogram of p-values (right panel of Figure 6.2):

> ALLsrest = ALL_bcrneg[sds<sh,]
> ttrest = rowttests(ALLsrest, "mol.biol")
> hist(ttrest$p.value, breaks=50, col=lcol2)

Exercise 6.1
Comment on the plot; do you think that the nonspecific filtering was
appropriate?

Observed p-values are a mix of samples from
• a uniform distribution (from true nulls) and
• from distributions concentrated at 0 (from true
alternatives)

Diagnostic plot: the histogram of p-values

Benjamini Hochberg multiple testing adjustment  

slope: α / #genes

Benjamini Hochberg multiple testing adjustment  

slope: α / #genes

BH = {
 i <- length(p):1
 o <- order(p, decreasing = TRUE)
 ro <- order(o)
 pmin(1, cummin(n/i * p[o]))[ro]
 }

For a series of hypothesis tests
H1...Hm with p-values pi, plot
!

(1−pi, N(pi)) for all i
!
where N(p) is the number of p-
values greater than p.
!
Red line: (1−pi,(1−p)*m)
!
(1−p)*m = expected number of

p-values greater than p

Schweder T, Spjøtvoll E (1982) Plots of P-values to evaluate
many tests simultaneously. Biometrika 69:493–502.!
See ‘genefilter’ vignette for an example.

How to estimate the number (not: the
identity) of differentially expressed genes

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

parathyroid dataset

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

parathyroid dataset

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

Figure 3: Histogram of the p values returned by the test for di↵erential expression.

high Poisson noise that any biological e↵ect is drowned in the uncertainties from the read counting.
The MA plot suggests that for genes with less than one or two counts per sample, averaged over all
samples, there is no real inferential power. We loose little if we filter out these genes:

> filterThreshold <- 2.0

> keep <- rowMeans(counts(dds, normalized=TRUE)) > filterThreshold

> table(keep)

keep

FALSE TRUE

41503 19117

Note that none of the genes below the threshold had a significant adjusted p value

> min(res$padj[!keep], na.rm=TRUE)

[1] 0.421

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test
found them to be non-significant anyway. However, these genes have an influence on the multiple
testing adjustment, whose performance improves if such genes are removed. Compare:

> table(p.adjust(res$pvalue, method="BH") < .1)

FALSE TRUE

28592 505

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

parathyroid dataset

is chosen, and points will be colored red if the adjusted p-value is less than 0.1. Points
which fall out of the window are plotted as open triangles.

plotMA(dds)

Figure 1: The MA-plot shows the log2 fold changes from the treatment over the mean
of normalized counts, i.e. the average of counts normalized by size factor. The DESeq2
package incorporates a prior on log2 fold changes, resulting in moderated estimates from
genes with very low counts, as can be seen by the narrowing of spread of points on the
left side of the plot.

4.2 More information on results columns

Information about which variables and tests were used can be found by calling the
function mcols on the results object.

mcols(res, use.names=TRUE)

DataFrame with 5 rows and 2 columns

type

<character>

baseMean intermediate

log2FoldChange results

lfcSE results

pvalue results

padj results

description

<character>

baseMean the base mean over all rows

Figure 3: Histogram of the p values returned by the test for di↵erential expression.

high Poisson noise that any biological e↵ect is drowned in the uncertainties from the read counting.
The MA plot suggests that for genes with less than one or two counts per sample, averaged over all
samples, there is no real inferential power. We loose little if we filter out these genes:

> filterThreshold <- 2.0

> keep <- rowMeans(counts(dds, normalized=TRUE)) > filterThreshold

> table(keep)

keep

FALSE TRUE

41503 19117

Note that none of the genes below the threshold had a significant adjusted p value

> min(res$padj[!keep], na.rm=TRUE)

[1] 0.421

At first sight, there may seem to be little benefit in filtering out these genes. After all, the test
found them to be non-significant anyway. However, these genes have an influence on the multiple
testing adjustment, whose performance improves if such genes are removed. Compare:

> table(p.adjust(res$pvalue, method="BH") < .1)

FALSE TRUE

28592 505

Figure 2: The mean of normalized counts provides an independent statistic for filtering
the tests. It is independent because the information about the variables in the design
formula is not used. By filtering out genes which fall to the left of the red line, the
majority of the low p-values are kept.

resFilt <- res[use,]

resFilt$padj <- p.adjust(resFilt$pvalue, method="BH")

sum(res$padj < .1, na.rm=TRUE)

[1] 1241

sum(resFilt$padj < .1, na.rm=TRUE)

[1] 1422

6.2 Why does it work?

Consider the p value histogram in Figure 3. It shows how the filtering ameliorates the
multiple testing problem – and thus the severity of a multiple testing adjustment – by
removing a background set of hypotheses whose p values are distributed more or less
uniformly in [0, 1].

h1 <- hist(res$pvalue[!use], breaks=50, plot=FALSE)

h2 <- hist(res$pvalue[use], breaks=50, plot=FALSE)

colori <- c(do not pass ="khaki", pass ="powderblue")

barplot(height = rbind(h1$counts, h2$counts), beside = FALSE,

col = colori, space = 0, main = "", ylab="frequency")

text(x = c(0, length(h1$counts)), y = 0, label = paste(c(0,1)),

adj = c(0.5,1.7), xpd=NA)

legend("topright", fill=rev(colori), legend=rev(names(colori)))

Independent filtering

From the set of all tests to be done,
first filter out those that seem to have insufficient power

anyway,
then formally test for differential expression on the rest.

Slide 7

Literature
von Heydebreck, Huber, Gentleman (2004)

Chiaretti et al., Clinical Cancer Research (2005)

McClintick and Edenberg (BMC Bioinf. 2006) and references therein

Hackstadt and Hess (BMC Bioinf. 2009)

Bourgon, Gentleman and Huber (PNAS 2010)

Many others.

Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as di↵erentially expressed) as a
function of the FDR threshold (x-axis) and the filtering cuto↵ ✓ (line colours, specified as quantiles of the distribution
of the filter statistic). The plot is produced by the rejection_plot function. Note that the lines for ✓ = 0% and
10% are overplotted by the line for ✓ = 20%, since for the data shown here, these quantiles correspond all to the same
set of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of ✓.

0% 10% 20% 30% 40% 50%

[1,] 0.895 0.895 0.895 NA NA NA

[2,] 0.997 0.997 0.997 0.998 0.995 0.993

[3,] 0.981 0.981 0.981 NA NA NA

[4,] 0.960 0.960 0.960 0.970 NA NA

[5,] 0.593 0.593 0.593 0.517 0.452 0.412

[6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values
for the di↵erent possible choices of cuto↵ theta. A value of NA indicates that the gene was filtered out at the
corresponding filter cuto↵. The rejection_plot function takes such a matrix and shows how rejection count (R)
relates to the choice of cuto↵ for the p-values. For these data, over a reasonable range of FDR cuto↵s, increased
filtering corresponds to increased rejections.

> rejection_plot(pBH, at="sample",

+ xlim=c(0, 0.5), ylim=c(0, 2000),

+ xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cuto↵

If we select a fixed cuto↵ for the adjusted p-values, we can also look more closely at the relationship between the
fraction of null hypotheses filtered and the total number of discoveries. The filtered_R function wraps filtered_p
and just returns rejection counts. It requires you to choose a particular p-value cuto↵, specified through the argument
alpha.

> theta = seq(from=0, to=0.8, by=0.02)

> rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and
true null hypotheses, very large values of ✓ reduce power in this example:

Diagnostics for independent filtering

Increased detection rates
Stage 1 filter: sum of counts, across samples, for each gene, and
remove the fraction (10%, 20%, …) of genes where that is smallest

Stage 2: standard NB-GLM test

Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as di↵erentially expressed) as a
function of the FDR threshold (x-axis) and the filtering cuto↵ ✓ (line colours, specified as quantiles of the distribution
of the filter statistic). The plot is produced by the rejection_plot function. Note that the lines for ✓ = 0% and
10% are overplotted by the line for ✓ = 20%, since for the data shown here, these quantiles correspond all to the same
set of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of ✓.

0% 10% 20% 30% 40% 50%

[1,] 0.895 0.895 0.895 NA NA NA

[2,] 0.997 0.997 0.997 0.998 0.995 0.993

[3,] 0.981 0.981 0.981 NA NA NA

[4,] 0.960 0.960 0.960 0.970 NA NA

[5,] 0.593 0.593 0.593 0.517 0.452 0.412

[6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values
for the di↵erent possible choices of cuto↵ theta. A value of NA indicates that the gene was filtered out at the
corresponding filter cuto↵. The rejection_plot function takes such a matrix and shows how rejection count (R)
relates to the choice of cuto↵ for the p-values. For these data, over a reasonable range of FDR cuto↵s, increased
filtering corresponds to increased rejections.

> rejection_plot(pBH, at="sample",

+ xlim=c(0, 0.5), ylim=c(0, 2000),

+ xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cuto↵

If we select a fixed cuto↵ for the adjusted p-values, we can also look more closely at the relationship between the
fraction of null hypotheses filtered and the total number of discoveries. The filtered_R function wraps filtered_p
and just returns rejection counts. It requires you to choose a particular p-value cuto↵, specified through the argument
alpha.

> theta = seq(from=0, to=0.8, by=0.02)

> rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and
true null hypotheses, very large values of ✓ reduce power in this example:

Diagnostics for independent filtering

Slide 9

Increased power?
Increased detection rate implies increased power  

only if we are still controlling type I errors at the same level as before.

Figure 3: Left panel: the plot shows the number of rejections (i. e. genes detected as di↵erentially expressed) as a
function of the FDR threshold (x-axis) and the filtering cuto↵ ✓ (line colours, specified as quantiles of the distribution
of the filter statistic). The plot is produced by the rejection_plot function. Note that the lines for ✓ = 0% and
10% are overplotted by the line for ✓ = 20%, since for the data shown here, these quantiles correspond all to the same
set of filtered genes (cf. Figure 1). Right panel: the number of rejections at FDR=10% as a function of ✓.

0% 10% 20% 30% 40% 50%

[1,] 0.895 0.895 0.895 NA NA NA

[2,] 0.997 0.997 0.997 0.998 0.995 0.993

[3,] 0.981 0.981 0.981 NA NA NA

[4,] 0.960 0.960 0.960 0.970 NA NA

[5,] 0.593 0.593 0.593 0.517 0.452 0.412

[6,] 0.951 0.951 0.951 0.964 0.938 0.924

The rows of this matrix correspond to the genes (i. e., the rows of res) and the columns to the BH-adjusted p-values
for the di↵erent possible choices of cuto↵ theta. A value of NA indicates that the gene was filtered out at the
corresponding filter cuto↵. The rejection_plot function takes such a matrix and shows how rejection count (R)
relates to the choice of cuto↵ for the p-values. For these data, over a reasonable range of FDR cuto↵s, increased
filtering corresponds to increased rejections.

> rejection_plot(pBH, at="sample",

+ xlim=c(0, 0.5), ylim=c(0, 2000),

+ xlab="FDR cutoff (Benjamini & Hochberg adjusted p-value)", main="")

The plot is shown in the left panel of Figure 3.

4.1 Choice of filtering cuto↵

If we select a fixed cuto↵ for the adjusted p-values, we can also look more closely at the relationship between the
fraction of null hypotheses filtered and the total number of discoveries. The filtered_R function wraps filtered_p
and just returns rejection counts. It requires you to choose a particular p-value cuto↵, specified through the argument
alpha.

> theta = seq(from=0, to=0.8, by=0.02)

> rejBH = filtered_R(alpha=0.1, filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

Because overfiltering (or use of a filter which is inappropriate for the application domain) discards both false and
true null hypotheses, very large values of ✓ reduce power in this example:

Diagnostics for independent filtering

Slide 9

Increased power?
Increased detection rate implies increased power  

only if we are still controlling type I errors at the same level as before.

Concern:
 Since we use a data-driven criterion in
stage 1, but do p-value and type-I error
related computations only on the genes in
stage 2, aren’t we ‘cheating’?
!
Informal justification:
Filter does not use covariate information

What do we need for experiment-wide type I error
(e.g.: FDR) control?

I. Per gene p-values must be bona-fide p-values: for those genes
for which H0 holds, p must be Uniform distributed.
II. Joint distribution of the p-values must comply with the
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)

What do we need for experiment-wide type I error
(e.g.: FDR) control?

I. Per gene p-values must be bona-fide p-values: for those genes
for which H0 holds, p must be Uniform distributed.
II. Joint distribution of the p-values must comply with the
assumptions of the multiple testing procedure (e.g. Benjamini-
Hochberg)

If these conditions hold without filtering, and
if the filtering is statistically independent from the test
statistics under the null,
they still hold with filtering.
(Bourgon, Gentleman, Huber, PNAS 2010)

Independence of filter and test statistics under the
null hypothesis

For genes for which the null hypothesis is true (X1 ,..., Xn exchangeable),
f (filter) and g (test) are statistically independent in all of the following cases:

• NB-test (DESeq2):
 f: overall count sum (or mean)

• Normally distributed data (e.g. microarray data after rma or vsn):
 f: overall variance, overall mean
 g: standard two-sample t-statistic, or any test statistic which is scale and

location invariant.

• Non-parametrically:
 f: any function that does not depend on the 

 order of the arguments. E.g. overall variance, IQR.
 g: the Wilcoxon rank sum test statistic.

Also in the multi-class context: ANOVA, Kruskal-Wallis.
Slide 11

Diagnostics
(see: vignettes of genefilter, DESeq2 packages)

Figure 4: The number of rejections at FDR=10% as a function of ✓ (analogous to the right panel in Figure 3) for a
number of di↵erent choices of the filter statistic.

> plot(theta, rejBH, type="l",

+ xlab=expression(theta), ylab="number of rejections")

The plot is shown in the right panel of Figure 3.

4.2 Choice of filtering statistic

We can use the analysis of the previous section 4.1 also to inform ourselves about di↵erent possible choices of filter
statistic. We construct a dataframe with a number of di↵erent choices.

> filterChoices = data.frame(

+ mean = res$filterstat,

+ geneID = badfilter,

+ min = rowMin(counts(cds)),

+ max = rowMax(counts(cds)),

+ sd = rowSds(counts(cds))

+)

> rejChoices = sapply(filterChoices, function(f)

+ filtered_R(alpha=0.1, filter=f, test=res$pvalue, theta=theta, method="BH"))

> library("RColorBrewer")

> myColours = brewer.pal(ncol(filterChoices), "Set1")

> matplot(theta, rejChoices, type="l", lty=1, col=myColours, lwd=2,

+ xlab=expression(theta), ylab="number of rejections")

> legend("bottomleft", legend=colnames(filterChoices), fill=myColours)

The result is shown in Figure 4. It indicates that for the data at hand, mean, max and sd provide similar performance,
whereas the other choices are less e↵ective.

5 Some more plots pertinent to multiple testing

5.1 Joint distribution of filter statistic and p-values

The left panel of Figure 1 shows the joint distribution of filter statistic and p-values. An alternative, perhaps simpler
view is provided by the p-value histograms in Figure 5. It shows how the filtering ameliorates the multiple testing

Diagnostics for independent filtering

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus the negative
logarithm of the test pvalue (y-axis). Right: the empirical cumulative distribution function (ECDF) shows the
relationships between the values of filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything substantial from our
subsequent results.

For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a
decimal number. The analogous scatterplot to that of Figure 1 is shown in Figure 2.

> badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

> plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)

Figure 2: Scatterplot analogous to Figure 1, but with badfilter.

4 How to choose the filter statistic and the cuto↵?

The filtered_p function in the genefilter package calculates adjusted p-values over a range of possible filtering
thresholds. Here, we call this function on our results from above and compute adjusted p-values using the method of
Benjamini and Hochberg (BH) for a range of di↵erent filter cuto↵s.

> library("genefilter")

> theta = seq(from=0, to=0.5, by=0.1)

> pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

> head(pBH)

Diagnostics for independent filtering

Figure 1: Left: scatterplot of the rank (scaled to [0, 1]) of the filter criterion filterstat (x-axis) versus the negative
logarithm of the test pvalue (y-axis). Right: the empirical cumulative distribution function (ECDF) shows the
relationships between the values of filterstat and its quantiles.

This means that by dropping the 40% genes with lowest filterstat, we do not loose anything substantial from our
subsequent results.

For comparison, suppose you had chosen a less useful filter statistic, say, the gene identifiers interpreted as a
decimal number. The analogous scatterplot to that of Figure 1 is shown in Figure 2.

> badfilter = as.numeric(gsub("[+]*FBgn", "", rownames(res)))

> plot(rank(badfilter)/length(badfilter), -log10(res$pvalue), pch=16, cex=0.45)

Figure 2: Scatterplot analogous to Figure 1, but with badfilter.

4 How to choose the filter statistic and the cuto↵?

The filtered_p function in the genefilter package calculates adjusted p-values over a range of possible filtering
thresholds. Here, we call this function on our results from above and compute adjusted p-values using the method of
Benjamini and Hochberg (BH) for a range of di↵erent filter cuto↵s.

> library("genefilter")

> theta = seq(from=0, to=0.5, by=0.1)

> pBH = filtered_p(filter=res$filterstat, test=res$pvalue, theta=theta, method="BH")

> head(pBH)

Diagnostics for independent filtering

Conclusion
Independent filtering can substantially increase your power at same

type I error.

Conclusion
Independent filtering can substantially increase your power at same

type I error.

References

Bourgon R., Gentleman R. and Huber W. Independent filtering

increases detection power for high-throughput experiments,

PNAS (2010)

Bioconductor package genefilter vignette: Diagnostics for

independent filtering

DESeq2 vignette

Richard
Bourgon
!
Robert
Gentleman
!
Michael
Love

Thank you

