Read Counting in RNA-seq

Hervé Pagès hpages@fhcrc.org

Fred Hutchinson Cancer Research Center Seattle, WA, USA

21 January 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Introduction

Counting the reads with Bioconductor

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The 2 types of applications of RNA-seq

Discovery

- find new transcripts
- find transcript boundaries
- find splice junctions

Comparison Given samples from different experimental conditions, find effects of the treatment on

 gene expression strengths (a.k.a. "differential analysis at the gene level")

isoform abundance ratios

Workflow of a differential analysis of RNA-Seq data

- Start with: Short-read sequences with qualities (FASTQ files)
- Align to a reference genome ==> SAM files
- Count reads per gene or exon (based on a gene model) => matrix of counts
- Statistical analysis on the counts (fold-changes, p values, etc...)
- Downstream analyses (gene set enrichment analysis, nearest peak to a differentially expressed gene, etc...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alignment

Typically done with a stand-alone software. For RNA-Seq, we need a splice-aware aligner:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- TopHat2
- GSNAP
- ▶ etc...

Counting reads per gene

- Count each read at most once.
- Discard a read if
 - it cannot be uniquely mapped
 - its alignment overlaps with several genes
 - the alignment quality score is bad
 - (for paired-end reads) the mates do not map to the same gene

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Outline

Introduction

Counting the reads with Bioconductor

(ロ)、(型)、(E)、(E)、 E) の(()

Reading BAM files

TODO...

<ロ>

Chosing and loading a gene model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

TODO...

Using summarizeOverlaps

(ロ)、(型)、(E)、(E)、 E) の(()

TODO...

Basic manipulation of a *SummarizedExperiment* object

TODO...

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?