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Two applications of RNA-Seq

Discovery
e find new transcripts
e find transcript boundaries
e find splice junctions

Comparison

Given samples from different experimental conditions, find effects
of the treatment on

e gene expression strengths

e isoform abundance ratios, splice patterns, transcript
boundaries



Sequencing count data
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RNA-Seq
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Counting rules

* Count reads, not base-pairs
e Count each read at most once.

* Discard a read if
e it cannot be uniquely mapped
e its alignment overlaps with several genes
e the alighment quality score is bad

e (for paired-end reads) the mates do not map to
the same gene



Why we discard non-unique
alignments

gene A

control condition

treatment condition

gene B
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Normalization for library size

* If sample A has been sampled deeper than
sample B, we expect counts to be higher.

* Naive approach: Divide by the total number
of reads per sample

* Problem: Genes that are strongly and
differentially expressed may distort the
ratio of total reads.



Normalization for library size

actual expression

sequenced reads

naivly normalized




Normalization for library size

Histogram of log2(sample2/sample1)
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Normalization for library size

To compare more than two samples:

* Form a “virtual reference sample” by taking,
for each gene, the geometric mean of counts

over all samples

* Normalize each sample to this reference, to get
one scaling factor (“size factor”) per sample.

Anders and Huber, 2010
similar approach: Robinson and Oshlack, 2010



Counting noise

In RNA-Seq, noise (and hence power) depends
on count level.

Why?



The Poisson distribution

* This bag contains very
many small balls, 10% of
which are red.

* Several experimenters are
tasked with determining
the percentage of red balls.

e Each of them is permitted to
draw 20 balls out of the bag,
without looking.
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Poisson distribution: Counting

uncertainty
expected number | standard deviation of relative error in
of red balls | number of red balls estimate for the fraction
of red balls
10 V10=3 1/\/10=31.6%
100 V100 = 10 1 /\/100 =10.0%
1,000 s sz /v1000 = 3.2%

V10,000 = 100

10,000 1/v10000= 1.0%



The negative binomial distribution

A commonly used generalization of the Poisson
distribution with two parameters
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Testing: Generalized linear models

Two sample groups: treatment and control.

Model:

* Countvalue K;; for a gene in sample j is generated by NB distribution
with means; ,c{ and dispersion a.

* The expected expression strength is:
log ;= Bip +X; Bir
x;= 0 if j is control sample
x;=1ifjis treatment sample

Null model:
fir =0, i.e,, expectation is the same for all samples

Alternative model:

P %0, li.e., expected expression changes from control to treatment,
with log fold change (LFC) S;



Testing: Generalized linear models
K, ~ NB (Sj W a;)
log w;; =By + X; Bir
x;= 0 for if j is control sample
x;=1forif j is treatment sample
Calculate the coefficients [ that fit best the observed data K.

[s the value for f,; significantly different from null?

Can we reject the null hypothesis that it is merely cause by
noise (as given by the dispersion «; )?

We use a Wald test to get a p value.



Tasks in comparative RNA-Seq analysis

* Estimate fold-change between control and
treatment

* Estimate variability within groups

_ _ o the hard part
* Determine significance



Dispersion

e Minimum variance of count data:
v=u (Poisson)

 Actual variance:
vEptap?

e «: “dispersion” a=(u-v)/u*
(squared coefficient of variation of extra-Poisson
variability)






Shrinkage estimation of dispersion (within-group variability)
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Shrinkage estimation of dispersion (within-group variability)
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Shrinkage estimation of dispersion (within-group variability)
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fold change knockdown vs control

Shrinkage estimation of effect sizes

without shrinkage
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Complex designs

Simple: Comparison between two groups.

More complex:

* paired samples

« testing for interaction effects

« accounting for nuisance covariates



GLMs: Blocking factor

Sample treated sex

S1 no male
S2 no male
S3 no male
S4 no female
S5 no female
S6 yes male
S7 yes male
S8 yes female
S9 yes female
S10 yes female




GLMs: Blocking factor
Kij ~ NB(sjpij, 0j)
full model for gene /.
log 115 = B; + @SCE’JS + 5?33?

reduced model for gene I

log pij = B; + B a5



GLMs: Interaction
Kij ~ NB(sjpij, ij)
full model for gene /.

log f155 = B; + @SCU? + 5;Tﬂf;r + 55333837?

reduced model for gene /.

log pij = B + Byx> + B @)



GLMs: paired designs

« Often, samples are paired (e.g., a tumour and
a healthy-tissue sample from the same patient)

« Then, using pair identity as blocking factor improves power.

full model.
ull mode 0 for [ = 1(healthy)

. — ;Y
log piji = B; +{ BZT for [ = 2(tumour)

reduced model: i gene

' bject
loo (1. = 39 J Su
g Wij 6 1 [ tissue state



GLMs: Dual-assay designs

How does the affinity of an RNA-binding protein to
MRNA change under some drug treatment?

Prepare control and treated samples (in replicates)
and perform on each sample RNA-Seq and CLIP-Seq,.

For each sample, we are interested in the
ratio of CLIP-Seq to RNA-Seq reads.

How is this ratio affected by treatment?



GLMs: CLIP-Seg/RNA-Seq assay

full model:
count ~ assaylype + treatment + assayType:treatment

reduced model:
count ~ assayType + treatment



GLMs: CLIP-Seq/RNA-Seq assay

full model:
count ~ sample + assayType + assayType:treatment

reduced model:
count ~ sample + assayType



Genes and transcripts

» So far, we looked at read counts per gene.

A gene’s read count may increase

* because the gene produces more
transcripts

* because the gene produces longer
transcripts

How to look at gene sub-structure?



Assigning reads to transcripts

A [ ]
B ]

100 reads 10 reads 30 reads

from A from B



Assigning reads to transcripts

A [ ]

B I [ 1]
200 reads 5 reads 15 reads
(90 from A, from A from B

150 from B?)

total: A: 55 reads
B: 165 reads (accuracy?)



One step back:
Differential exon usage

Our tool, DEXSeq, tests for differential usage of
exons.

Usage on an exon =

number of reads mapping to the exon
number of reads mapping to any other exon of the same gene




Differential exon usage -- Example
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Differential exon usage -- Example
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Differential usage of
exons or of isoforms?

IE

casette exon with casette exon with
well-understood uncharacterized
function function



Summary

« Estimating fold-changes without estimating
variability is pointless.

« Estimating variability from few samples requires
information sharing across genes (shrinkage)

« Shrinkage can also regularize fold-change
estimates. (New in DESeq2)
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Fisher’s exact test between two samples

Example data: fly cell culture, knock-down of pasilla
(Brooks et al., Genome Res., 2011)

knock-down sample T2
Versus
control sample U3

control sample U2
versus
control sample U3
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red: significant genes according to Fisher test (at 10% FDR)



