```{r setup, echo=FALSE} library(LearnBioconductor) stopifnot(BiocInstaller::biocVersion() == "3.1") ``` ```{r style, echo = FALSE, results = 'asis'} BiocStyle::markdown() knitr::opts_chunk$set(tidy=FALSE) ``` # Bioconductor for Sequence Analysis Martin Morgan
February 2, 2015 ## Sequence analysis work flows 1. Experimental design - Keep it simple, e.g., 'control' and 'treatment' groups - Replicate within treatments! 2. Wet-lab sequence preparation - Record covariates, including processing day -- likely 'batch effects' 3. (Illumina) Sequencing (Bentley et al., 2008, [doi:10.1038/nature07517](doi:10.1038/nature07517)) - Primary output: FASTQ files of short reads and their [quality scores](http://en.wikipedia.org/wiki/FASTQ_format#Encoding) 4. Alignment - Choose to match task, e.g., [Rsubread][], Bowtie2 good for ChIPseq, some forms of RNAseq; BWA, GMAP better for variant calling - Primary output: BAM files of aligned reads 5. Reduction - e.g., RNASeq 'count table' (simple spreadsheets), DNASeq called variants (VCF files), ChIPSeq peaks (BED, WIG files) 6. Analysis - Differential expression, peak identification, ... 7. Comprehension - Biological context Data movement ![Alt Sequencing Ecosystem](our_figures/SequencingEcosystem_no_bioc_pkgs.png) ## Sequence data representations ### DNA / amino acid sequences: FASTA files Input & manipulation: [Biostrings][] >NM_078863_up_2000_chr2L_16764737_f chr2L:16764737-16766736 gttggtggcccaccagtgccaaaatacacaagaagaagaaacagcatctt gacactaaaatgcaaaaattgctttgcgtcaatgactcaaaacgaaaatg ... atgggtatcaagttgccccgtataaaaggcaagtttaccggttgcacggt >NM_001201794_up_2000_chr2L_8382455_f chr2L:8382455-8384454 ttatttatgtaggcgcccgttcccgcagccaaagcactcagaattccggg cgtgtagcgcaacgaccatctacaaggcaatattttgatcgcttgttagg ... Whole genomes: `2bit` and `.fa` formats: [rtracklayer][], [Rsamtools][]; [BSgenome][] ### Reads: FASTQ files Input & manipulation: [ShortRead][] `readFastq()`, `FastqStreamer()`, `FastqSampler()` @ERR127302.1703 HWI-EAS350_0441:1:1:1460:19184#0/1 CCTGAGTGAAGCTGATCTTGATCTACGAAGAGAGATAGATCTTGATCGTCGAGGAGATGCTGACCTTGACCT + HHGHHGHHHHHHHHDGG>CE?=896=: @ERR127302.1704 HWI-EAS350_0441:1:1:1460:16861#0/1 GCGGTATGCTGGAAGGTGCTCGAATGGAGAGCGCCAGCGCCCCGGCGCTGAGCCGCAGCCTCAGGTCCGCCC + DE?DD>ED4>EEE>DE8EEEDE8B?EB<@3;BA79?,881B?@73;1?######################## - Quality scores: 'phred-like', encoded. See [wikipedia](http://en.wikipedia.org/wiki/FASTQ_format#Encoding) ### Aligned reads: BAM files (e.g., ERR127306_chr14.bam) Input & manipulation: 'low-level' [Rsamtools][], `scanBam()`, `BamFile()`; 'high-level' [GenomicAlignments][] - Header @HD VN:1.0 SO:coordinate @SQ SN:chr1 LN:249250621 @SQ SN:chr10 LN:135534747 @SQ SN:chr11 LN:135006516 ... @SQ SN:chrY LN:59373566 @PG ID:TopHat VN:2.0.8b CL:/home/hpages/tophat-2.0.8b.Linux_x86_64/tophat --mate-inner-dist 150 --solexa-quals --max-multihits 5 --no-discordant --no-mixed --coverage-search --microexon-search --library-type fr-unstranded --num-threads 2 --output-dir tophat2_out/ERR127306 /home/hpages/bowtie2-2.1.0/indexes/hg19 fastq/ERR127306_1.fastq fastq/ERR127306_2.fastq - Alignments: ID, flag, alignment and mate ERR127306.7941162 403 chr14 19653689 3 72M = 19652348 -1413 ... ERR127306.22648137 145 chr14 19653692 1 72M = 19650044 -3720 ... ERR127306.933914 339 chr14 19653707 1 66M120N6M = 19653686 -213 ... ERR127306.11052450 83 chr14 19653707 3 66M120N6M = 19652348 -1551 ... ERR127306.24611331 147 chr14 19653708 1 65M120N7M = 19653675 -225 ... ERR127306.2698854 419 chr14 19653717 0 56M120N16M = 19653935 290 ... ERR127306.2698854 163 chr14 19653717 0 56M120N16M = 19653935 2019 ... - Alignments: sequence and quality ... GAATTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCC *'%%%%%#&&%''#'&%%%)&&%%$%%'%%'&*****$))$)'')'%)))&)%%%%$'%%%%&"))'')%)) ... TTGATCAGTCTCATCTGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAG '**)****)*'*&*********('&)****&***(**')))())%)))&)))*')&***********)**** ... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT '******&%)&)))&")')'')'*((******&)&'')'))$))'')&))$)**&&**************** ... TGAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCT ##&&(#')$')'%&&#)%$#$%"%###&!%))'%%''%'))&))#)&%((%())))%)%)))%********* ... GAGAGTAACTTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTT )&$'$'$%!&&%&&#!'%'))%''&%'&))))''$""'%'%&%'#'%'"!'')#&)))))%$)%)&'"'))) ... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)# ... TTTGTACCCATCACTGATTCCTTCTGAGACTGCCTCCACTTCCCCAGCAGCCTCTGGTTTCTTCATGTGGCT ++++++++++++++++++++++++++++++++++++++*++++++**++++**+**''**+*+*'*)))*)# - Alignments: Tags ... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:2 CC:Z:chr22 CP:i:16189276 HI:i:0 ... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:72 YT:Z:UU NH:i:3 CC:Z:= CP:i:19921600 HI:i:0 ... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921465 HI:i:0 ... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:4 MD:Z:72 YT:Z:UU XS:A:+ NH:i:2 CC:Z:chr22 CP:i:16189138 HI:i:0 ... AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:5 MD:Z:72 YT:Z:UU XS:A:+ NH:i:3 CC:Z:= CP:i:19921464 HI:i:0 ... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19653717 HI:i:0 ... AS:i:0 XM:i:0 XO:i:0 XG:i:0 MD:Z:72 NM:i:0 XS:A:+ NH:i:5 CC:Z:= CP:i:19921455 HI:i:1 ### Called variants: VCF files Input and manipulation: [VariantAnnotation][] `readVcf()`, `readInfo()`, `readGeno()` selectively with `ScanVcfParam()`. - Header ##fileformat=VCFv4.2 ##fileDate=20090805 ##source=myImputationProgramV3.1 ##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta ##contig= ##phasing=partial ##INFO= ##INFO= ... ##FILTER= ##FILTER= ... ##FORMAT= ##FORMAT= - Location #CHROM POS ID REF ALT QUAL FILTER ... 20 14370 rs6054257 G A 29 PASS ... 20 17330 . T A 3 q10 ... 20 1110696 rs6040355 A G,T 67 PASS ... 20 1230237 . T . 47 PASS ... 20 1234567 microsat1 GTC G,GTCT 50 PASS ... - Variant INFO #CHROM POS ... INFO ... 20 14370 ... NS=3;DP=14;AF=0.5;DB;H2 ... 20 17330 ... NS=3;DP=11;AF=0.017 ... 20 1110696 ... NS=2;DP=10;AF=0.333,0.667;AA=T;DB ... 20 1230237 ... NS=3;DP=13;AA=T ... 20 1234567 ... NS=3;DP=9;AA=G ... - Genotype FORMAT and samples ... POS ... FORMAT NA00001 NA00002 NA00003 ... 14370 ... GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. ... 17330 ... GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3 ... 1110696 ... GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 ... 1230237 ... GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 ... 1234567 ... GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3 ### Genome annotations: BED, WIG, GTF, etc. files Input: [rtracklayer][] `import()` - BED: range-based annotation (see http://genome.ucsc.edu/FAQ/FAQformat.html for definition of this and related formats) - WIG / bigWig: dense, continuous-valued data - GTF: gene model - Component coordinates 7 protein_coding gene 27221129 27224842 . - . ... ... 7 protein_coding transcript 27221134 27224835 . - . ... 7 protein_coding exon 27224055 27224835 . - . ... 7 protein_coding CDS 27224055 27224763 . - 0 ... 7 protein_coding start_codon 27224761 27224763 . - 0 ... 7 protein_coding exon 27221134 27222647 . - . ... 7 protein_coding CDS 27222418 27222647 . - 2 ... 7 protein_coding stop_codon 27222415 27222417 . - 0 ... 7 protein_coding UTR 27224764 27224835 . - . ... 7 protein_coding UTR 27221134 27222414 . - . ... - Annotations gene_id "ENSG00000005073"; gene_name "HOXA11"; gene_source "ensembl_havana"; gene_biotype "protein_coding"; ... ... transcript_id "ENST00000006015"; transcript_name "HOXA11-001"; transcript_source "ensembl_havana"; tag "CCDS"; ccds_id "CCDS5411"; ... exon_number "1"; exon_id "ENSE00001147062"; ... exon_number "1"; protein_id "ENSP00000006015"; ... exon_number "1"; ... exon_number "2"; exon_id "ENSE00002099557"; ... exon_number "2"; protein_id "ENSP00000006015"; ... exon_number "2"; ... ## Sequence data in _R_ / _Bioconductor_ ### Role for Bioconductor - Pre-processing and alignment - Data reduction - Statistical analysis - Comprehension -- integrative and 'down stream' analysis ![Alt Sequencing Ecosystem](our_figures/SequencingEcosystem.png) ### Sequences _Biostrings_ classes for DNA or amino acid sequences - XString, XStringSet, e.g., DNAString (genomes), DNAStringSet (reads) Methods - [Cheat sheat](http://bioconductor.org/packages/release/bioc/vignettes/Biostrings/inst/doc/BiostringsQuickOverview.pdf) - Manipulation, e.g., `reverseComplement()` - Summary, e.g., `letterFrequency()` - Matching, e.g., `matchPDict()`, `matchPWM()` Related packages - [BSgenome][] - Whole-genome representations - Model organism or custom - 'Masks' to exclude regions (pre-computed or arbitrary) from calculations - [BSgenome][]: Whole-genome sequence representation & manipulation) - [Rsamtools][]: `FaFile` class for indexed on-disk representation - [rtracklayer][]: UCSC '2bit' (`TwoBitFile`) class for indexed on-disk representation Example - Whole-genome sequences are distrubuted by ENSEMBL, NCBI, and others as FASTA files; model organism whole genome sequences are packaged into more user-friendly `BSgenome` packages. The following calculates GC content across chr14. ```{r BSgenome-require, message=FALSE} suppressPackageStartupMessages({ library(BSgenome.Hsapiens.UCSC.hg19) }) chr14_range = GRanges("chr14", IRanges(1, seqlengths(Hsapiens)["chr14"])) chr14_dna <- getSeq(Hsapiens, chr14_range) letterFrequency(chr14_dna, "GC", as.prob=TRUE) ``` ### Ranges Ranges represent: - Data, e.g., aligned reads, ChIP peaks, SNPs, CpG islands, ... - Annotations, e.g., gene models, regulatory elements, methylated regions - Ranges are defined by chromosome, start, end, and strand - Often, metadata is associated with each range, e.g., quality of alignment, strength of ChIP peak Many common biological questions are range-based - What reads overlap genes? - What genes are ChIP peaks nearest? - ... The [GenomicRanges][] package defines essential classes and methods - `GRanges` ![Alt ](our_figures/GRanges.png) - `GRangesList` ![Alt ](our_figures/GRangesList.png) #### Range operations ![Alt Ranges Algebra](our_figures/RangeOperations.png) Ranges - IRanges - `start()` / `end()` / `width()` - List-like -- `length()`, subset, etc. - 'metadata', `mcols()` - GRanges - 'seqnames' (chromosome), 'strand' - `Seqinfo`, including `seqlevels` and `seqlengths` Intra-range methods - Independent of other ranges in the same object - GRanges variants strand-aware - `shift()`, `narrow()`, `flank()`, `promoters()`, `resize()`, `restrict()`, `trim()` - See `?"intra-range-methods"` Inter-range methods - Depends on other ranges in the same object - `range()`, `reduce()`, `gaps()`, `disjoin()` - `coverage()` (!) - see `?"inter-range-methods"` Between-range methods - Functions of two (or more) range objects - `findOverlaps()`, `countOverlaps()`, ..., `%over%`, `%within%`, `%outside%`; `union()`, `intersect()`, `setdiff()`, `punion()`, `pintersect()`, `psetdiff()` Example ```{r ranges, message=FALSE} suppressPackageStartupMessages({ library(GenomicRanges) }) gr <- GRanges("A", IRanges(c(10, 20, 22), width=5), "+") shift(gr, 1) # 1-based coordinates! range(gr) # intra-range reduce(gr) # inter-range coverage(gr) setdiff(range(gr), gr) # 'introns' ``` IRangesList, GRangesList - List: all elements of the same type - Many *List-aware methods, but a common 'trick': apply a vectorized function to the unlisted representaion, then re-list grl <- GRangesList(...) orig_gr <- unlist(grl) transformed_gr <- FUN(orig) transformed_grl <- relist(, grl) Reference - Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8): e1003118. doi:10.1371/journal.pcbi.1003118 ### [GenomicAlignments][] (Aligned reads) Classes -- GenomicRanges-like behaivor - GAlignments, GAlignmentPairs, GAlignmentsList - SummarizedExperiment - Matrix where rows are indexed by genomic ranges, columns by a DataFrame. Methods - `readGAlignments()`, `readGAlignmentsList()` - Easy to restrict input, iterate in chunks - `summarizeOverlaps()` Example - Find reads supporting the junction identified above, at position 19653707 + 66M = 19653773 of chromosome 14 ```{r bam-require} suppressPackageStartupMessages({ library(GenomicRanges) library(GenomicAlignments) library(Rsamtools) }) ## our 'region of interest' roi <- GRanges("chr14", IRanges(19653773, width=1)) ## sample data suppressPackageStartupMessages({ library('RNAseqData.HNRNPC.bam.chr14') }) bf <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[[1]], asMates=TRUE) ## alignments, junctions, overlapping our roi paln <- readGAlignmentsList(bf) j <- summarizeJunctions(paln, with.revmap=TRUE) j_overlap <- j[j %over% roi] ## supporting reads paln[j_overlap$revmap[[1]]] ``` ### [VariantAnnotation][] (called variants) Classes -- GenomicRanges-like behavior - VCF -- 'wide' - VRanges -- 'tall' Functions and methods - I/O and filtering: `readVcf()`, `readGeno()`, `readInfo()`, `readGT()`, `writeVcf()`, `filterVcf()` - Annotation: `locateVariants()` (variants overlapping ranges), `predictCoding()`, `summarizeVariants()` - SNPs: `genotypeToSnpMatrix()`, `snpSummary()` Example - Read variants from a VCF file, and annotate with respect to a known gene model ```{r vcf, message=FALSE} ## input variants suppressPackageStartupMessages({ library(VariantAnnotation) }) fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation") vcf <- readVcf(fl, "hg19") seqlevels(vcf) <- "chr22" ## known gene model suppressPackageStartupMessages({ library(TxDb.Hsapiens.UCSC.hg19.knownGene) }) coding <- locateVariants(rowData(vcf), TxDb.Hsapiens.UCSC.hg19.knownGene, CodingVariants()) head(coding) ``` Related packages - [ensemblVEP][] - Forward variants to Ensembl Variant Effect Predictor - [VariantTools][], [h5vc][] - Call variants - [VariantFiltering][] - Filter variants using criteria such as coding consequence, MAF, ..., inheritance model Reference - Obenchain, V, Lawrence, M, Carey, V, Gogarten, S, Shannon, P, and Morgan, M. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics, first published online March 28, 2014 [doi:10.1093/bioinformatics/btu168](http://bioinformatics.oxfordjournals.org/content/early/2014/04/21/bioinformatics.btu168) ### [rtracklayer][] (Genome annotations) - Import BED, GTF, WIG, etc - Export GRanges to BED, GTF, WIG, ... - Access UCSC genome browser ## A sequence analysis package tour This very open-ended topic points to some of the most prominent Bioconductor packages for sequence analysis. Use the opportunity in this lab to explore the package vignettes and help pages highlighted below; many of the material will be covered in greater detail in subsequent labs and lectures. Basics - Bioconductor packages are listed on the [biocViews][] page. Each package has 'biocViews' (tags from a controlled vocabulary) associated with it; these can be searched to identify appropriately tagged packages, as can the package title and author. - Each package has a 'landing page', e.g., for [GenomicRanges][]. Visit this landing page, and note the description, authors, and installation instructions. Packages are often written up in the scientific literature, and if available the corresponding citation is present on the landing page. Also on the landing page are links to the vignettes and reference manual and, at the bottom, an indication of cross-platform availability and download statistics. - A package needs to be installed once, using the instructions on the landing page. Once installed, the package can be loaded into an R session ```{r require} suppressPackageStartupMessages({ library(GenomicRanges) }) ``` and the help system queried interactively, as outlined above: ```{r help, eval=FALSE} help(package="GenomicRanges") vignette(package="GenomicRanges") vignette(package="GenomicRanges", "GenomicRangesHOWTOs") ?GRanges ``` Domain-specific analysis -- explore the landing pages, vignettes, and reference manuals of two or three of the following packages. - Important packages for analysis of differential expression include [edgeR][] and [DESeq2][]; both have excellent vignettes for exploration. Additional research methods embodied in Bioconductor packages can be discovered by visiting the [biocViews][] web page, searching for the 'DifferentialExpression' view term, and narrowing the selection by searching for 'RNA seq' and similar. - Popular ChIP-seq packages include [DiffBind][] for comparison of peaks across samples, [ChIPQC][] for quality assessment, and [ChIPpeakAnno][] for annotating results (e.g., discovering nearby genes). What other ChIP-seq packages are listed on the [biocViews][] page? - Working with called variants (VCF files) is facilitated by packages such as [VariantAnnotation][], [VariantFiltering][], [ensemblVEP][], and [SomaticSignatures][]; packages for calling variants include, e.g., [h5vc][] and [VariantTools][]. - Several packages identify copy number variants from sequence data, including [cn.mops][]; from the [biocViews][] page, what other copy number packages are available? The [CNTools][] package provides some useful facilities for comparison of segments across samples. - Microbiome and metagenomic analysis is facilitated by packages such as [phyloseq][] and [metagenomeSeq][]. - Metabolomics, chemoinformatics, image analysis, and many other high-throughput analysis domains are also represented in Bioconductor; explore these via biocViews and title searches. Working with sequences, alignments, common web file formats, and raw data; these packages rely very heavily on the [IRanges][] / [GenomicRanges][] infrastructure that we will encounter later in the course. - The [Biostrings][] package is used to represent DNA and other sequences, with many convenient sequence-related functions. Check out the functions documented on the help page `?consensusMatrix`, for instance. Also check out the [BSgenome][] package for working with whole genome sequences, e.g., `?"getSeq,BSgenome-method"` - The [GenomicAlignments][] package is used to input reads aligned to a reference genome. See for instance the `?readGAlignments` help page and `vigentte(package="GenomicAlignments", "summarizeOverlaps")` - [rtracklayer][]'s `import` and `export` functions can read in many common file types, e.g., BED, WIG, GTF, ..., in addition to querying and navigating the UCSC genome browser. Check out the `?import` page for basic usage. - The [ShortRead][] and [Rsamtools][] packages can be used for lower-level access to FASTQ and BAM files, respectively. Explore the [ShortRead vignette](http://bioconductor.org/packages/release/bioc/vignettes/ShortRead/inst/doc/Overview.pdf) and Scalable Genomics labs to see approaches to effectively processing the large files. Visualization - The [Gviz][] package provides great tools for visualizing local genomic coordinates and associated data. - [epivizr][] drives the [epiviz](http://epiviz.cbcb.umd.edu/) genome browser from within R; [rtracklayer][] provides easy ways to transfer data to and manipulate UCSC browser sessions. - Additionl packages include [ggbio][], [OmicCircos][], ... ## Lab ### Short read quality assessment `fastqc` is a Java program commonly used for summarizing quality of fastq files. It has a straight-forward graphical user interface. Here we will use the command-line version. 1. From within _Rstudio_, choose 'Tools --> Shell...', or log on to your Amazon machine instance using a Mac / linux terminal or on Windows the PuTTY program. 2. Run fastqc on sample fastq files, sending the output to the `~/fastqc_report` directory. fastqc fastq/*fastq --threads 8 --outdir=fastqc_reports 3. Study the quality report and resulting on-line [documentation](FIXME): In the Files tab, click on `fastqc_reports`. Click on the HTML file there and then click on "View in Web Browser". `r Biocpkg("ShortRead")` provides similar functionality, but from within _R_. The following shows that _R_ can handle large data, and illustrates some of the basic ways in which one might interact with functionality provided by a _Bioconductor_ package. ```{r ShortRead, messages=FALSE} ## 1. attach ShortRead and BiocParallel suppressPackageStartupMessages({ library(ShortRead) library(BiocParallel) }) ## 2. create a vector of file paths fls <- dir("~/fastq", pattern="*fastq", full=TRUE) ``` ```{r fakestats, eval=FALSE} ## 3. collect statistics stats0 <- qa(fls) ``` ```{r realstats, echo=FALSE, results="hide"} data(stats0) ``` ```{r browseStats} ## 4. generate and browse the report if (interactive()) browseURL(report(stats0)) ``` Check out the qa report from all lanes ```{r ShortRead-qa-all} data(qa_all) if (interactive()) browseURL(report(qa_all)) ``` ### Alignments (and genomic annotations) This data is from the `r Biocannopkg("airway")` Bioconductor annotation package; see the [vignette](http://bioconductor.org/packages/release/data/experiment/vignettes/airway/inst/doc/airway.html) for details _Bioconductor_: we'll explore how to map between different types of identifiers, how to navigate genomic coordinates, and how to query BAM files for aligned reads. 1. Attach 'Annotation' packages containing information about gene symbols `r Biocannopkg("org.Hs.eg.db")` and genomic coordinates (e.g., genes, exons, cds, transcripts) `r Biocannopkg("TxDb.Hsapiens.UCSC.hg19.knownGene")`. Arrange for the 'seqlevels' (chromosome names) in the TxDb package to match those in the BAM files. 2. Use an appropriate `org.*` package to map from gene symbol to Entrez gene id, and the appropriate `TxDb.*` package to retrieve gene coordinates of the SPARCL1 gene. N.B. -- The following uses a single gene symbol, but we could have used 1, 2, or all gene symbols in a _vectorized_ fashion. 3. Attach the `r Biocpkg("GenomicAlignments")` package for working with aligned reads. Use `range()` to get the genomic coordinates spanning the first and last exon of SPARCL1. Input paired reads overlapping SPARCL1. 4. What questions can you easily answer about these alignments? E.g., how many reads overlap this region of interest? ```{r setup-view, message=FALSE, warning=FALSE} ## 1.a 'Annotation' packages suppressPackageStartupMessages({ library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) }) ## 1.b -- map 'seqlevels' as recorded in the TxDb file to those in the ## BAM file fl <- "~/igv/genomes/hg19_alias.tab" map <- with(read.delim(fl, header=FALSE, stringsAsFactors=FALSE), setNames(V1, V2)) seqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene, force=TRUE) <- map ## 2. Symbol -> Entrez ID -> Gene coordinates sym2eg <- select(org.Hs.eg.db, "SPARCL1", "ENTREZID", "SYMBOL") exByGn <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "gene") sparcl1exons <- exByGn[[sym2eg$ENTREZID]] ## 3. Aligned reads suppressPackageStartupMessages({ library(GenomicAlignments) }) fl <- "~/bam/SRR1039508_sorted.bam" sparcl1gene <- range(sparcl1exons) param <- ScanBamParam(which=sparcl1gene) aln <- readGAlignmentPairs(fl, param=param) ``` 5. As another exercise we ask how many of the reads we've input are compatible with the known gene model. We have to find the transcripts that belong to our gene, and then exons grouped by transcript ```{r compatibleAlignments, warning=FALSE} ## 5.a. exons-by-transcript for our gene of interest txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID, "TXID", "GENEID")$TXID exByTx <- exonsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids] ## 5.b compatible alignments hits <- findCompatibleOverlaps(query=aln, subject=exByTx) good <- seq_along(aln) %in% queryHits(hits) table(good) ``` 6. Finally, let's go from gene model to protein coding sequence. (a) Extract CDS regions grouped by transcript, select just transcripts we're interested in, (b) attach and then extract the coding sequence from the appropriate reference genome. Translating the coding sequences to proteins. ```{r coding-sequence, warning=FALSE} ## reset seqlevels restoreSeqlevels(TxDb.Hsapiens.UCSC.hg19.knownGene) ## a. cds coordinates, grouped by transcript txids <- select(TxDb.Hsapiens.UCSC.hg19.knownGene, sym2eg$ENTREZID, "TXID", "GENEID")$TXID cdsByTx <- cdsBy(TxDb.Hsapiens.UCSC.hg19.knownGene, "tx")[txids] ## b. coding sequence from relevant reference genome suppressPackageStartupMessages({ library(BSgenome.Hsapiens.UCSC.hg19) }) dna <- extractTranscriptSeqs(BSgenome.Hsapiens.UCSC.hg19, cdsByTx) protein <- translate(dna) ``` ### Working with genomic ranges Visit the "GenomicRanges HOWTOs" vignette. ```{r GenomicRanges-howtos, eval=FALSE} browseVignettes("GenomicRanges") ``` Read section 1, and do exercises 2.2, 2.4, 2.5, 2.8, 2.12, and 2.13. Perhaps select additional topics of particular interest to you. ## Resources _R_ / _Bioconductor_ - [Web site][Bioconductor] -- install, learn, use, develop _R_ / _Bioconductor_ packages - [Support](http://support.bioconductor.org) -- seek help and guidance; also [StackOverflow](http://stackoverflow.com/questions/tagged/r) for _R_ programming questions - [biocViews](http://bioconductor.org/packages/release/BiocViews.html) -- discover packages - Package landing pages, e.g., [GenomicRanges](http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html), including title, description, authors, installation instructions, vignettes (e.g., GenomicRanges '[How To](http://bioconductor.org/packages/release/bioc/vignettes/GenomicRanges/inst/doc/GenomicRangesHOWTOs.pdf)'), etc. - [Course](http://bioconductor.org/help/course-materials/) and other [help](http://bioconductor.org/help/) material (e.g., videos, EdX course, community blogs, ...) Publications and presentations - Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, et al. (2013) Software for Computing and Annotating Genomic Ranges. PLoS Comput Biol 9(8): e1003118. doi: [10.1371/journal.pcbi.1003118][GRanges.bib] - Lawrence, M. 2014. Software for Enabling Genomic Data Analysis. Bioc2014 conference [slides](http://bioconductor.org/help/course-materials/2014/BioC2014/Lawrence_Talk.pdf). [R]: http://r-project.org [Bioconductor]: http://bioconductor.org [GRanges.bib]: http://dx.doi.org/10.1371/journal.pcbi.1003118 [Scalable.bib]: http://arxiv.org/abs/1409.2864 [Lawrence.bioc2014.bib]: http://bioconductor.org/help/course-materials/2014/BioC2014/Lawrence_Talk.pdf [AnnotationData]: http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData [AnnotationDbi]: http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html [AnnotationHub]: http://bioconductor.org/packages/release/bioc/html/AnnotationHub.html [BSgenome.Hsapiens.UCSC.hg19]: http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html [BSgenome]: http://bioconductor.org/packages/release/bioc/html/BSgenome.html [Biostrings]: http://bioconductor.org/packages/release/bioc/html/Biostrings.html [Bsgenome.Hsapiens.UCSC.hg19]: http://bioconductor.org/packages/release/data/annotation/html/Bsgenome.Hsapiens.UCSC.hg19.html [CNTools]: http://bioconductor.org/packages/release/bioc/html/CNTools.html [ChIPQC]: http://bioconductor.org/packages/release/bioc/html/ChIPQC.html [ChIPpeakAnno]: http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html [DESeq2]: http://bioconductor.org/packages/release/bioc/html/DESeq2.html [DiffBind]: http://bioconductor.org/packages/release/bioc/html/DiffBind.html [GenomicAlignments]: http://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html [GenomicRanges]: http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html [Homo.sapiens]: http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html [IRanges]: http://bioconductor.org/packages/release/bioc/html/IRanges.html [KEGGREST]: http://bioconductor.org/packages/release/bioc/html/KEGGREST.html [PSICQUIC]: http://bioconductor.org/packages/release/bioc/html/PSICQUIC.html [Rsamtools]: http://bioconductor.org/packages/release/bioc/html/Rsamtools.html [Rsubread]: http://bioconductor.org/packages/release/bioc/html/Rsubread.html [ShortRead]: http://bioconductor.org/packages/release/bioc/html/ShortRead.html [SomaticSignatures]: http://bioconductor.org/packages/release/bioc/html/SomaticSignatures.html [TxDb.Hsapiens.UCSC.hg19.knownGene]: http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html [VariantAnnotation]: http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html [VariantFiltering]: http://bioconductor.org/packages/release/bioc/html/VariantFiltering.html [VariantTools]: http://bioconductor.org/packages/release/bioc/html/VariantTools.html [biocViews]: http://bioconductor.org/packages/release/BiocViews.html#___Software [biomaRt]: http://bioconductor.org/packages/release/bioc/html/biomaRt.html [cn.mops]: http://bioconductor.org/packages/release/bioc/html/cn.mops.html [edgeR]: http://bioconductor.org/packages/release/bioc/html/edgeR.html [ensemblVEP]: http://bioconductor.org/packages/release/bioc/html/ensemblVEP.html [h5vc]: http://bioconductor.org/packages/release/bioc/html/h5vc.html [limma]: http://bioconductor.org/packages/release/bioc/html/limma.html [metagenomeSeq]: http://bioconductor.org/packages/release/bioc/html/metagenomeSeq.html [org.Hs.eg.db]: http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html [org.Sc.sgd.db]: http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html [phyloseq]: http://bioconductor.org/packages/release/bioc/html/phyloseq.html [rtracklayer]: http://bioconductor.org/packages/release/bioc/html/rtracklayer.html [snpStats]: http://bioconductor.org/packages/release/bioc/html/snpStats.html [Gviz]: http://bioconductor.org/packages/release/bioc/html/Gviz.html [epivizr]: http://bioconductor.org/packages/release/bioc/html/epivizr.html [ggbio]: http://bioconductor.org/packages/release/bioc/html/ggbio.html [OmicCircos]: http://bioconductor.org/packages/release/bioc/html/OmicCircos.html