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Chapter 3

High Quality Graphics in R
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Figure 3.1: An elementary law of visualisation.

fixme: Review this when chapter is finished:

There are two important types of data visualization. The first enables a scientist
to e�ectively explore the data and make discoveries about the complex processes at
work. The other type of visualization should be a clear and informative illustration
of the study’s results that she can show to others and eventually include in the final
publication.

Both of these types of graphics can be made with R. In fact, R o�ers multiple
systems for plotting data. This is because R is an extensible system, and because
progress in R graphics has proceeded largely not be replacing the old functions, but
by adding packages. Each of the di�erent approaches has its own advantages and
limitations. In this chapter we’ll briefly get to know some of the base R plotting
functions1. Subsequently we will switch to the ggplot2 graphics system. 1 They live in the graphics package, which ships

with every basic R installation.Base R graphics were historically first: simple, procedural, canvas-oriented.
There are many specialized functions for di�erent types of plots. Recurring plot
modifications, like legends, grouping of the data by using di�erent plot symbols,
colors or subpanels, have to be reinvented over and over again. Complex plots can
quickly get messy to program. A more high-level approach – grammar of graphics,
plots are built in modular pieces, so that we can easily try di�erent visualization types
for our data in an intuitive and easily deciphered way, like we can switch in and out
parts of a sentence in human language.
We’ll explore faceting, for showing more than 2 variables at a time. Sometimes

this is also called lattice2 graphics, and it allows us to visualise data to up to 4 or 5 2 The first major R package to implement this was
lattice; nowadays much of that functionality is
also provided through ggplot2.

dimensions.
In the end of the chapter, we cover some specialized forms of plotting such as maps

and ideograms, still building on the base concept of the grammar of graphics. fixme:
Update

3.1 Goals for this Chapter

• Review the basics of base R plotting
• Understand the logic behind the grammar of graphics concept

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/graphics/index.html
http://cran.fhcrc.org/web/packages/lattice/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
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• Introduce ggplot2’s ggplot function
• See how to plot 1D, 2D, 3-5D data, and understand faceting
• Become good at rapidly exploring data sets by visualization
• Create beautiful and intuitive plots for scientific presentations and publications

3.2 Base R Plotting
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Figure 3.2: Plot of concentration vs. density for an
ELISA assay of DNase.The most basic function is the plot function. In the code below, the output of which

is shown in Figure 3.2, it is used to plot data from an enzyme-linked immunosorbent
assay (ELISA) assay. The assay was used to quantify the activity of the enzyme de-
oxyribonuclease (DNase), which degrades DNA. The data are assembled in the R object
DNase, which conveniently comes with base R. DNase is a nfnGroupedData, nfGrouped-
Data, groupedData, data.frame whose columns are Run, the assay run; conc, the protein
concentration that was used; and density, the measured optical density.

head(DNase)
## Run conc density

## 1 1 �.�4882812 �.�17

## 2 1 �.�4882812 �.�18

## 3 1 �.1953125� �.121

## 4 1 �.1953125� �.124

## 5 1 �.39�625�� �.2�6

## 6 1 �.39�625�� �.215

plot(DNase$conc, DNase$density)
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Figure 3.3: Same data as in Figure 3.2 but with
better axis labels and a di�erent plot symbol.This basic plot can be customized, for example by changing the plotting symbol

and axis labels as shown in Figure 3.3 by using the parameters xlab, ylab and pch
(plot character). The information about the labels is stored in the object DNase, and
we can access it with the attr function.

plot(DNase$conc, DNase$density,
ylab = attr(DNase, "labels")$y,
xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),
pch = 3,

col = "blue")

Besides scatterplots, we can also use built-in functions to create histograms and
boxplots (Figure 3.4).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient to show multiple distributions next to each other in a
compact space, and they are universally preferable to the barplots with error bars
sometimes still seen in biological papers. We will see more about plotting univariate
distributions in Section 3.6.
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Figure 3.4: Histogram of the density from
the ELISA assay, and boxplots of these values
stratified by the assay run. The boxes are ordered
along the axis in lexicographical order because
the runs were stored as text strings. We could
use R’s type conversion functions to achieve
numerical ordering.

These plotting functions are great for quick interactive exploration of data; but
we run quickly into their limitations if we want to create more sophisticated displays.
We are going to use a visualization framework called the grammar of graphics, imple-
mented in the package ggplot2, that enables step by step construction of high quality
graphics in a logical and elegant manner. But first let us load up an example dataset.

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
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3.3 An Example Dataset

To properly testdrive the ggplot2 functionality, we are going to need a dataset that is
big enough and has some complexity so that it can be sliced and viewed from many
di�erent angles.

Figure 3.5: Single-section immunofluorescence
image of the E3.5 mouse blastocyst stained for
Serpinh1, a marker of primitive endoderm (blue),
Gata6 (red) and Nanog (green). Scale bar: 10 µm.

We’ll use a gene expression microarray data set that reports the transcriptomes
of around 100 individual cells from mouse embryos at di�erent time points in early
development. The mammalian embryo starts out as a single cell, the fertilized egg.
Through synchronized waves of cell divisions, the egg multiplies into a clump of cells
that at first show no discernible di�erences between them. At some point, though,
cells choose di�erent lineages. Eventually, by further and further specification, the
di�erent cell types and tissues arise that are needed for a full organism. The aim
of the experiment3 was to investigate the gene expression changes that associated

3 Y. Ohnishi, W. Huber, A. Tsumura, M. Kang,
P. Xenopoulos, K. Kurimoto, A. K. Oles, M. J.
Arauzo-Bravo, M. Saitou, A. K. Hadjantonakis,
and T. Hiiragi. Cell-to-cell expression variability
followed by signal reinforcement progressively
segregates early mouse lineages. Nature Cell
Biology, 16(1):27–37, 2014

with the first symmetry breaking event in the embryo. We’ll further explain the data
as we go. More details can be found in the paper and in the documentation of the
Bioconductor data package Hiiragi2013. We first load the package and the data:

library("Hiiragi2�13")
data("x")
dim(exprs(x))
## [1] 451�1 1�1

You can print out a more detailed summary of the ExpressionSet object x by just typ-
ing x at the R prompt. The 101 columns of the data matrix (accessed above through
the exprs function) correspond to the samples (and each of these to a single cell), the
45101 rows correspond to the genes probed by the array, an A�ymetrix mouse4302
array. The data were normalized using the RMA method4. The raw data are also avail- 4 R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-

Barclay, K. J. Antonellis, U. Scherf, and T. P. Speed.
Exploration, normalization, and summaries of
high density oligonucleotide array probe level
data. Biostatistics, 4(2):249–264, 2003

able in the package (in the data object a) and at EMBL-EBI’s ArrayExpress database
under the accession code E-MTAB-1681.
Let’s have a look what information is available about the samples5.

5 The notation #CAB2D6 is a hexadecimal
representation of the RGB coordinates of a colour;
more on this in Section 3.9.2.

head(pData(x), n = 2)
## File.name Embryonic.day Total.number.of.cells lineage

## 1 E3.25 1_C32_IN E3.25 32

## 2 E3.25 2_C32_IN E3.25 32

## genotype ScanDate sampleGroup sampleColour

## 1 E3.25 WT 2�11-�3-16 E3.25 #CAB2D6

## 2 E3.25 WT 2�11-�3-16 E3.25 #CAB2D6

The information provided is a mix of information about the cells (i.e., age, size and
genotype of the embryo from which they were obtained) and technical information
(scan date, raw data file name). By convention, time in the development of the mouse
embryo is measured in days, and reported as, for instance, E3.5. Moreover, in the
paper the authors divided the cells into 8 biological groups (sampleGroup), based
on age, genotype and lineage, and they defined a colour scheme to represent these
groups (sampleColour)6. Using the group_by and summarise functions from 6 In this chapter we’ll use the spelling colour

(rather than color). This is to stay consistent with
the spelling adopted by the R package ggplot2.
Other packages, like RColorBrewer, use the other
spelling. In some cases, function or argument
names are duplicated to allow users to use either
choice, although you cannot always rely on that.

the package dplyr, we’ll define a little data.frame groups that contains summary
information for each group: the number of cells and the preferred colour.

library("dplyr")
groups = group_by(pData(x), sampleGroup) %>%
summarise(n = n() , colour = unique(sampleColour))

groups

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://bioconductor.org/packages/release/data/experiment/html/Hiiragi2013.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
http://cran.fhcrc.org/web/packages/dplyr/index.html
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## Source: local data frame [8 x 3]

##

## sampleGroup n colour

## <chr> <int> <chr>

## 1 E3.25 36 #CAB2D6

## 2 E3.25 (FGF4-KO) 17 #FDBF6F

## 3 E3.5 (EPI) 11 #A6CEE3

## 4 E3.5 (FGF4-KO) 8 #FF7F��

## 5 E3.5 (PE) 11 #B2DF8A

## 6 E4.5 (EPI) 4 #1F78B4

## 7 E4.5 (FGF4-KO) 1� #E31A1C

## 8 E4.5 (PE) 4 #33A�2C

The cells in the groups whose name contains FGF4-KO are from embryos in
which the FGF4 gene, an important regulator of cell di�erentiation, was knocked
out. Starting from E3.5, the wildtype cells (without the FGF4 knock-out) undergo the
first symmetry breaking event and di�erentiate into di�erent cell lineages, called
pluripotent epiblast (EPI) and primitive endoderm (PE).

3.4 ggplot2

The ggplot2 package is a package created by Hadley Wickham that implements the idea
of grammar of graphics – a concept created by Leland Wilkinson in his eponymous
book7. Comprehensive documentation for the package8 can be found on its website. 7 L. Wilkinson. The Grammar of Graphics.

Springer, 2005
8 Hadley Wickham. ggplot2: Elegant Graphics
for Data Analysis. Springer New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/
ggplot2/book

The online documentation includes example use cases for each of the graphic types
that are introduced in this chapter (and many more) and is an invaluable resource
when creating figures.
Let’s start by loading the package and redoing the simple plot of Figure 3.2.

library("ggplot2")
ggplot(DNase, aes(x = conc, y = density)) + geom_point()
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Figure 3.6: Our first ggplot2 figure, similar to the
base graphics Figure 3.2.

We just wrote our first "sentence" using the grammar of graphics. Let us decon-
struct this sentence. First, we specified the nfnGroupedData, nfGroupedData, groupedData,
data.frame that contains the data, DNase. Then we told ggplot via the aes9 argu-

9 This stands for aesthetic, a terminology that
will become clearer below.

ment which variables we want on the x- and�-axes, respectively. Finally, we stated
that we want the plot to use points, by adding the result of calling the function
geom_point.
Now let’s turn to the mouse single cell data and plot the number of samples for

each of the 8 groups using the ggplot function. The result is shown in Figure 3.7.

ggplot(data = groups, aes(x = sampleGroup, y = n)) +
geom_bar(stat = "identity")

0
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E3.25E3.25 (FGF4−KO)E3.5 (EPI)E3.5 (FGF4−KO)E3.5 (PE)E4.5 (EPI)E4.5 (FGF4−KO)E4.5 (PE)
sampleGroup

n

Figure 3.7: A barplot, produced with the ggplot
function from the table of group sizes in the
mouse single cell data.

ggplot generally expects the data to be plotted to be assembled in a data.frame
– as opposed to, say, two individual vectors. By adding the call to geom_bar we
told ggplot that we want each data item (each row of groups) to be represented
by a bar. Bars are one geometric object (geom) that ggplot knows about. We’ve
already seen another geom in Figure 3.6: points. We’ll encounter many other possible
geometric objects later. We used the aes to indicate that we want the groups shown

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://ggplot2.org
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book
http://cran.fhcrc.org/web/packages/ggplot2/index.html
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along the x-axis and the sizes along the�-axis. Finally, we provided the argument
stat = "identity" (in other words, do nothing) to the geom_bar function, since
otherwise it would try to compute a histogram of the data (the default value of stat
is "count"). stat is short for statistic, which is what we call any function of data.
The identity statistic just returns the data themselves, but there are other more
interesting statistics, such as binning, smoothing, averaging, taking a histogram, or
other operations that summarize the data in some way.
Question 3.4.1
Flip the x - and�-aesthetics to produce a horizontal barplot.
These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an
English sentence.
The plot in Figure 3.7 is not bad, but there are several potential improvements.

We can use colour for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same colour scheme in several plots. To
this end, let’s define a named vector groupColour that contains our desired colours
for each possible value of sampleGroup10. 10 The information is completely equivalent to

that in the sampleGroup and colour columns
of the data.frame groups, we’re just adapting to
the fact that ggplot2 expects this information in
the form of a named vector.

groupColour = setNames(groups$colour, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now
they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +
geom_bar(stat = "identity") +
scale_fill_manual(values = groupColour, name = "Groups") +
theme(axis.text.x = element_text(angle = 9�, hjust = 1))
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Figure 3.8: Similar to Figure 3.7, but with coloured
bars and better bar labels.

Let’s dissect the above "sentence". We added an argument, fill to the aes func-
tion that states that we want the bars to be coloured (filled) based on sampleGroup
(which in this case co-incidentally is also the value of the x argument, but that need
not be so). Furthermore we added a call to the scale_fill_manual function, which
takes as its input a colour map – i. e., the mapping from the possible values of a vari-
able to the associated colours – as a named vector. We also gave this colour map a
title (note that in more complex plots, there can be several di�erent colour maps
involved). Had we omitted the call to scale_fill_manual, ggplot2 would have used
its choice of default colours. We also added a call to theme stating that we want the
x-axis labels rotated by 90 degrees, and right-aligned (hjust; the default would be to
center it).

3.5 The Grammar of Graphics

The components of ggplot2’s grammar of graphics are
1. a dataset
2. one or more geometric objects that serve as the visual representations of the data –
for instance, points, lines, rectangles, contours

3. a description of how the variables in the data are mapped to visual properties (aes-
thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
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rank)
4. a statistical summarisation rule
5. a coordinate system
6. a facet specification, i. e. the use of several plots to look at the same data

In the examples above, Figures 3.7 and 3.8, the dataset was groupsize, the variables
were the numeric values as well as the names of groupsize, which we mapped to
the aesthetics�-axis and x-axis respectively, the scale was linear on the� and rank-
based on the x-axis (the bars are ordered alphanumerically and each has the same
width), the geometric object was the rectangular bar, and the statistical summary was
the trivial one (i. e., none). We did not make use of a facet specification in the plots
above, but we’ll see examples later on (Section 3.8).
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Figure 3.9: A scatterplot with three layers that
show di�erent statistics of the same data: points,
a smooth regression line, and a confidence band.
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Figure 3.10: As Figure 3.9, but in addition
with points coloured by the sample group
(as in Figure 3.8). We can now see that the
expression values of the gene Timd2 (whose
mRNA is targeted by the probe 1418765_at)
are consistently high in the early time points,
whereas its expression goes down in the EPI
samples at days 3.5 and 4.5. In the FGF4-KO, this
decrease is delayed - at E3.5, its expression is still
high. Conversely, the gene Fn1 (1426642_at) is o�
in the early timepoints and then goes up at days
3.5 and 4.5. The PE samples (green) show a high
degree of cell-to-cell variability.

In fact, ggplot2’s implementation of the grammar of graphics allows you to use the
same type of component multiple times, in what are called layers11. For example, the

11 Hadley Wickham. A layered grammar of graphics.
Journal of Computational and Graphical
Statistics, 19(1):3–28, 2010

code below uses three types of geometric objects in the same plot, for the same data:
points, a line and a confidence band.

dftx = data.frame(t(exprs(x)), pData(x))
ggplot( dftx, aes( x = X1426642_at, y = X1418765_at)) +
geom_point( shape = 1 ) +
geom_smooth( method = "loess" )

Here we had to assemble a copy of the expression data (exprs(x)) and the sample
annotation data (pData(x)) all together into the data.frame dftx – since this is
the data format that ggplot2 functions most easily take as input (more on this in
Sections 3.6.1 and 3.6.9).
We can further enhance the plot by using colours – since each of the points in

Figure 3.9 corresponds to one sample, it makes sense to use the sampleColour
information in the object x.

ggplot( dftx, aes( x = X1426642_at, y = X1418765_at )) +

geom_point( aes( colour = sampleColour), shape = 19 ) +
geom_smooth( method = "loess" ) +
scale_colour_discrete( guide = FALSE )

Question 3.5.1 In the code above we defined the colour aesthetics (aes) only for the
geom_point layer, while we defined the x and y aesthetics for all layers. What happens if we
set the colour aesthetics for all layers, i. e., move it into the argument list of ggplot? What
happens if we omit the call to scale_colour_discrete?
Question 3.5.2 Is it always meaningful to summarize scatterplot data with a regression line
as in Figures 3.9 and 3.10?
As a small side remark, if we want to find out which genes are targeted by these

probe identifiers, and what they might do, we can call12.

12 Note that here were need to use the original
feature identifiers (e. g., “1426642_at”, without
the leading “X”). This is the notation used by the
microarray manufacturer, by the Bioconductor
annotation packages, and also inside the object
x. The leading “X” that we used above when
working with dftx was inserted during the
creation of dftx by the constructor fuction
data.frame, since its argument check.names
is set to TRUE by default. Alternatively, we could
have kept the original identifer notation by
setting check.names=FALSE, but then we
would need to work with the backticks, such as
aes( x = `1426642_at`, ...), to make
sure R understands them correctly.

library("mouse43�2.db")

AnnotationDbi::select(mouse43�2.db,
keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",
columns = c("SYMBOL", "GENENAME"))

## PROBEID SYMBOL

## 1 1426642_at Fn1

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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## 2 1418765_at Timd2

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthetics and a
geometric object. Most geometric objects implicitly call a suitable default statistical
summary of the data. For example, if you are using geom_smooth, ggplot2 by default
uses stat = "smooth" and then displays a line; if you use geom_histogram, the
data are binned, and the result is displayed in barplot format. Here’s an example:
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Figure 3.11: Histogram of probe intensities for
one particular sample, cell number 20, which was
from day E3.25.

dfx = as.data.frame(exprs(x))
ggplot(dfx, aes(x = ‘2� E3.25‘)) +

geom_histogram(binwidth = �.2)

Question 3.5.3 What is the di�erence between the objects dfx and dftx? Why did we
need to create both of the?
Question 3.5.4 Check the ggplot2 documentation for examples of the usage of stats.
Let’s come back to the barplot example from above.

pb = ggplot(groups, aes(x = sampleGroup, y = n))

This creates a plot object pb. If we try to display it, it creates an empty plot,
because we haven’t specified what geometric object we want to use. All that we have
in our pb object so far are the data and the aesthetics (Fig. 3.12)

pb
10

20

30

E3.25E3.25 (FGF4−KO)E3.5 (EPI)E3.5 (FGF4−KO)E3.5 (PE)E4.5 (EPI)E4.5 (FGF4−KO)E4.5 (PE)
sampleGroup

n
Figure 3.12: pb: without a geometric object, the
plot remains empty.

Now we can literally add on the other components of our plot through using the +
operator (Fig. 3.13):

pb = pb + geom_bar(stat = "identity")
pb = pb + aes(fill = sampleGroup)
pb = pb + theme(axis.text.x = element_text(angle = 9�, hjust = 1))
pb

class(pb)
## [1] "gg" "ggplot"

0

10

20

30

E3
.2

5

E3
.2

5 
(F

G
F4
−K

O
)

E3
.5

 (E
PI

)

E3
.5

 (F
G

F4
−K

O
)

E3
.5

 (P
E)

E4
.5

 (E
PI

)

E4
.5

 (F
G

F4
−K

O
)

E4
.5

 (P
E)

sampleGroup

n

sampleGroup
E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)

E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE)

Figure 3.13: The graphics object bp in its full
glory.

This step-wise buildup –taking a graphics object already produced in some way
and then further refining it– can be more convenient and easy to manage than,
say, providing all the instructions upfront to the single function call that creates
the graphic. We can quickly try out di�erent visualisation ideas without having to
rebuild our plots each time from scratch, but rather store the partially finished object
and then modify it in di�erent ways. For example we can switch our plot to polar
coordinates to create an alternative visualization of the barplot.

pb.polar = pb + coord_polar() +
theme(axis.text.x = element_text(angle = �, hjust = 1),

axis.text.y = element_blank(),
axis.ticks = element_blank()) +

xlab("") + ylab("")
pb.polar

E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE)

sampleGroup
E3.25

E3.25 (FGF4−KO)

E3.5 (EPI)

E3.5 (FGF4−KO)

E3.5 (PE)

E4.5 (EPI)

E4.5 (FGF4−KO)

E4.5 (PE)

Figure 3.14: A barplot in a polar coordinate
system.

Note above that we can override previously set theme parameters by simply
setting them to a new value – no need to go back to recreating pb, where we originally
set them.

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
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3.6 1D Visualisations

A common task in biological data analysis is the comparison between several samples
of univariate measurements. In this section we’ll explore some possibilities for
visualizing and comparing such samples. As an example, we’ll use the intensities
of a set of four genes Fgf4, Sox2, Gata6, Gata4 and Gapdh13. On the array, they are 13 You can read more about these genes in the

paper associated with the data.represented by

probes = c(Fgf4 = "142��85_at", Gata4 = "1418863_at",

Gata6 = "1425463_at", Sox2 = "1416967_at")

3.6.1 Data tidying I – matrices versus data.frame

fixme: Rewrite this section – move the more philosophical parts to the Wrap-Up chapter.
Getting data ready for visualisation often involves a lot of shu�ing around of the

data, until they are in the right shape and format for the algorithm or plotting routine.
ggplot2 likes its data in data.frame objects, and more specifically, in the long format14. 14 More about this below.

The reasons behind this choice are well explained in Hadley Wickham’s paper on tidy
data15. Essentially the long format table is a general way of representing data that can 15 Hadley Wickham. Tidy data. Journal of

Statistical Software, 59(10), 2014accommodate pretty much any data type and is easy to programmatically interface to.
On the other hand, for a specific data type, it may not always be the most e�cient

way of storing data, and it cannot easily transport rich metadata (i. e., data about the
data)16. For instance, our example dataset x is stored as an object in Bioconductor’s 16 In other words, simple tables or data.frames

cannot o�er all the nice features provided by ob-
ject oriented approaches, such as encapsulation,
abstraction of interface from implementation,
polymorphism, inheritance and reflection.

ExpressionSet class, which has multiple components, most importantly, the matrix
exprs(x) with 45101 rows and 101 columns. The matrix elements are the gene
expression measurements, and the feature and sample associated with each mea-
surement are implied by its position (row, column) in the matrix; in contrast, in the
long table format, the feature and sample identifiers need to be stored explicitly with
each measurement. Besides, x has additional components, including the data.frames
fData(x) and pData, which provide various sets metadata about the microarray
features and the phenotypic information about the samples.
To extract data from this representation and convert them into a data.frame, we use

the function melt, which we’ll explain in more detail below.

library("reshape2")
genes = melt(exprs(x)[probes, ], varnames = c("probe", "sample"))
head(genes)
## probe sample value

## 1 142��85_at 1 E3.25 3.�27715

## 2 1418863_at 1 E3.25 4.843137

## 3 1425463_at 1 E3.25 5.5��618

## 4 1416967_at 1 E3.25 1.731217

## 5 142��85_at 2 E3.25 9.293�16

## 6 1418863_at 2 E3.25 5.53��16

For good measure, we also add a column that provides the gene symbol along with
the probe identifiers.

genes$gene = names(probes)[ match(genes$probe, probes) ]

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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3.6.2 Barplots

A popular way to display data such as in our data.frame genes is through barplots. See
Fig. 3.15.

ggplot(genes, aes( x = gene, y = value)) +
stat_summary(fun.y = mean, geom = "bar")
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Figure 3.15: Barplots showing the means of the
distributions of expression measurements from 4
probes.

In Figure 3.15, each bar represents the mean of the values for that gene. Such plots
are seen a lot in the biological sciences, as well as in the popular media. The data
summarisation into only the mean looses a lot of information, and given the amount
of space it takes, a barplot can be a poor way to visualise data17.

17 In fact, if the mean is an appropriate summary,
such as for highly skewed distributions, or data
sets with outliers, the barplot can be outright
misleading.

Sometimes we want to add error bars, and one way to achieve this in ggplot2 is as
follows.

library("Hmisc")
ggplot(genes, aes( x = gene, y = value, fill = gene)) +
stat_summary(fun.y = mean, geom = "bar") +
stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

width = �.25)

Here, we see again the principle of layered graphics: we use two summary func-
tions, mean and mean_cl_normal, and two associated geometric objects, bar and
errorbar. The function mean_cl_normal is from the Hmisc package and computes
the standard error (or confidence limits) of the mean; it’s a simple function, and we
could also compute it ourselves using base R expressions if we wished to do so. We
also coloured the bars in lighter colours for better contrast.
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Figure 3.16: Barplots with error bars indicating
standard error of the mean.

3.6.3 Boxplots

It’s easy to show the same data with boxplots.

p = ggplot(genes, aes( x = gene, y = value, fill = gene))
p + geom_boxplot()
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Figure 3.17: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is much more
informative. In Figure 3.17 we see that two of the genes (Gata4, Gata6) have relatively
concentrated distributions, with only a few data points venturing out to the direction
of higher values. For Fgf4, we see that the distribution is right-skewed: the median,
indicated by the horizontal black bar within the box is closer to the lower (or left) side
of the box. Analogously, for Sox2 the distribution is left-skewed.

3.6.4 Violin plots

A variation of the boxplot idea, but with an even more direct representation of the
shape of the data distribution, is the violin plot. Here, the shape of the violin gives a
rough impression of the distribution density.

p + geom_violin()

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/Hmisc/index.html


14 ������ ���������� ��� ������ �������

3.6.5 Dot plots and beeswarm plots

If the number of data points is not too large, it is possible to show the data points
directly, and it is good practice to do so, compared to using more abstract summaries.
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Figure 3.18: Violin plots.

However, plotting the data directly will often lead to overlapping points, which can
be visually unpleasant, or even obscure the data. We can try to layout the points so
that they are as near possible to their proper locations without overlap18.

18 L. Wilkinson. Dot plots. The American
Statistician, 53(3):276, 1999

p + geom_dotplot(binaxis = "y", binwidth = 1/6,
stackdir = "center", stackratio = �.75,

aes(color = gene))

The plot is shown in the left panel of Figure 3.19. The�-coordinates of the points
are discretized into bins (above we chose a bin size of 1/6), and then they are stacked
next to each other.
A fun alternative is provided by the package beeswarm. It works with base R

graphics and is not directly integrated into ggplot2’s data flows, so we can either use
the base R graphics output, or pass on the point coordinates to ggplot as follows.

library("beeswarm")
bee = beeswarm(value ~ gene, data = genes, spacing = �.7)
ggplot(bee, aes( x = x, y = y, colour = x.orig)) +
geom_point(shape = 19) + xlab("gene") + ylab("value") +
scale_fill_manual(values = probes)
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Figure 3.19: Left: dot plots, made using
geom_dotplot from ggplot2. Right: beeswarm
plots, with layout obtained via the beeswarm pack-
age and plotted as a scatterplot with ggplot.

The plot is shown in the right panel of Figure 3.19. The default layout method
used by beeswarm is called swarm. It places points in increasing order. If a point
would overlap an existing point, it is shifted sideways (along the x-axis) by a minimal
amount su�cient to avoid overlap.
As you have seen in the above code examples, some twiddling with layout parame-

ters is usually needed to make a dot plot or a beeswarm plot look good for a particular
dataset.

3.6.6 Density plots

Yet another way to represent the same data is by lines plots of the density plots

http://cran.fhcrc.org/web/packages/beeswarm/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/beeswarm/index.html
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ggplot(genes, aes( x = value, colour = gene)) + geom_density()

Density estimation has a number of complications, and you can see these in
Figure 3.20. In particular, the need for choosing a smoothing window. A window size
that is small enough to capture peaks in the dense regions of the data may lead to
instable (“wiggly”) estimates elsewhere; if the window is made bigger, pronounced
features of the density may be smoothed out. Moreover, the density lines do not
convey the information on how much data was used to estimate them, and plots like
Figure 3.20 can become especially problematic if the sample sizes for the curves di�er.
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Figure 3.20: Density plots.

3.6.7 ECDF plots

The mathematically most robust way to describe the distribution of a one-dimensional
random variableX is its cumulative distribution function (CDF), i. e., the function

F (x) = P(X  x), (3.1)

where x takes all values along the real axis. The density ofX is then the derivative
of F , if it exists19. The definition of the CDF can also be applied to finite samples of 19 By its definition, F tends to 0 for small x

(x ! �1) and to 1 for large x (x ! +1).X , i. e., samples x1, . . . ,xn . The empirical cumulative distribution function (ECDF) is
simply

Fn(x) =
1
n

nX

i=1
x xi . (3.2)

An important property is that even for limited sample sizes n, the ECDF Fn is not very
far from the CDF, F . This is not the case for the empirical density! Without smoothing,
the empirical density of a finite sample is a sum of Dirac delta functions, which is
di�cult to visualize and quite di�erent from any underlying smooth, true density.
With smoothing, the di�erence can be less pronounced, but is di�cult to control, as
discussed above.

ggplot(genes, aes( x = value, colour = gene)) + stat_ecdf()
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Figure 3.21: Empirical cumulative distribution
functions (ECDF).

3.6.8 Transformations

It is tempting to look at histograms or density plots and inspect them for evidence
of bimodality (or multimodality) as an indication of some underlying biological
phenomenon. Before doing so, it is important to remember that the number of modes
of a density depends on scale transformations of the data, via the chain rule. A simple
example, with a mixture of two normal distributions, is shown in Figure 3.22.

sim <- data_frame(
x = exp(rnorm(
n = 1e5,

mean = sample(c(2, 5), size = 1e5, replace = TRUE))))

gridExtra::grid.arrange(
ggplot(sim, aes(x)) +
geom_histogram(binwidth = 1�, boundary = �) + xlim(�, 4��),

ggplot(sim, aes(log(x))) + geom_histogram(bins = 3�)
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)

Question 3.6.1 Consider a log-normal mixture model as in the code above. What is the
density function ofX ? What is the density function of lo�(X )? How many modes do these
densities have, as a function of the parameters of the mixture model (mean and standard
deviation of the component normals, and mixture fraction)?
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Figure 3.22: Histograms of the same data, with
and without logarithmic transformation. The
number of modes is di�erent.

3.6.9 Data tidying II - wide vs long format

Let us revisit the melt command from above. In the resulting data.frame genes, each
row corresponds to exactly one measured value, stored in the column value. Then
there are additional columns probe and sample, which store the associated covariates.
Compare this to the following data.frame (for space reasons we print only the first five
columns):

as.data.frame(exprs(x)[probes, ])[, 1:5]
## 1 E3.25 2 E3.25 3 E3.25 4 E3.25 5 E3.25

## 142��85_at 3.�27715 9.293�16 2.94�142 9.715243 8.924228

## 1418863_at 4.843137 5.53��16 4.418�59 5.982314 4.92358�

## 1425463_at 5.5��618 6.16�9�� 4.584961 4.753439 4.629728

## 1416967_at 1.731217 9.697�38 4.16124� 9.54�123 8.7�534�

This data.frame has several columns of data, one for each sample (annotated by the
column names). Its rows correspond to the four probes, annotated by the row names.
This is an example for a data table in wide format.
Now suppose we want to store somewhere not only the probe identifiers but also

the associated gene symbols. We could stick them as an additional column into the
wide format data.frame, and perhaps also throw in the genes’ ENSEMBL identifier for
good measure. But now we immediately see the problem: the data.frame now has some
columns that represent di�erent samples, and others that refer to information for
all samples (the gene symbol and identifier) and we somehow have to "know" this
when interpreting the data.frame. This is what Hadley Wickham calls untidy data20. 20 There are many di�erent ways for data to be

untidy.In contrast, in the tidy data.frame genes, we can add these columns, yet still know
that each row forms exactly one observation, and all information associated with that
observation is in the same row.
In tidy data21, 21 Hadley Wickham. Tidy data. Journal of

Statistical Software, 59(10), 20141. each variable forms a column,
2. each observation forms a row,
3. each type of observational unit forms a table.
A potential drawback is e�ciency: even though there are only 4 probe – gene symbol
relationships, we are now storing them 404 times in the rows of the data.frame genes.
Moreover, there is no standardisation: we chose to call this column symbol, but
the next person might call it Symbol or even something completely di�erent, and
when we find a data.frame that was made by someone else and that contains a column
symbol, we can hope, but have no guarantee, that these are valid gene symbols.
Addressing such issues is behind the object-oriented design of the specialized data
structures in Bioconductor, such as the ExpressionSet class.

http://en.wikipedia.org/wiki/Anna_Karenina_principle
http://en.wikipedia.org/wiki/Anna_Karenina_principle
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3.7 2D Visualisation: Scatter Plots

Scatter plots are useful for visualizing treatment–response comparisons (as in Fig-
ure 3.3), associations between variables (as in Figure 3.10), or paired data (e. g., a
disease biomarker in several patients before and after treatment). We use the two
dimensions of our plotting paper, or screen, to represent the two variables.

Figure 3.23: Scatterplot of 45101 expression
measurements for two of the samples.

Let us take a look at di�erential expression between a wildtype and an FGF4-KO
sample.

scp = ggplot(dfx, aes( x = ‘59 E4.5 (PE)‘ ,
y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column names
(sample names) in the data.frame dfx, which we created above. Since they contain
special characters (spaces, parentheses, hyphen) and start with numerals, we need to
enclose them with the downward sloping quotes to make them syntactically digestible
for R. The plot is shown in Figure 3.15. We get a dense point cloud that we can try and
interpret on the outskirts of the cloud, but we really have no idea visually how the
data are distributed within the denser regions of the plot.
One easy way to ameliorate the overplotting is to adjust the transparency (alpha

value) of the points by modifying the alpha parameter of geom_point (Figure 3.24).

Figure 3.24: As Figure 3.23, but with semi-
transparent points to resolve some of the
overplotting.

scp + geom_point(alpha = �.1)

This is already better than Figure 3.23, but in the very density regions even the
semi-transparent points quickly overplot to a featureless black mass, while the more
isolated, outlying points are getting faint. An alternative is a contour plot of the 2D
density, which has the added benefit of not rendering all of the points on the plot, as
in Figure 3.25.

scp + geom_density2d()

Figure 3.25: As Figure 3.23, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure 3.25 that the point cloud at the bottom right (which
contains a relatively small number of points) is no longer represented. We can
somewhat overcome this by tweaking the bandwidth and binning parameters of
geom_density2d (Figure 3.26, left panel).

scp + geom_density2d(h = �.5, bins = 6�)

We can fill in each space between the contour lines with the relative density of
points by explicitly calling the function stat_density2d (for which geom_density2d
is a wrapper) and using the geometric object polygon, as in the right panel of Fig-
ure 3.26.

library("RColorBrewer")
colourscale = scale_fill_gradientn(

colours = rev(brewer.pal(9, "YlGnBu")),
values = c(�, exp(seq(-5, �, length.out = 1��))))

scp + stat_density2d(h = �.5, bins = 6�,
aes( fill = ..level..), geom = "polygon") +

colourscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to define the

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
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Figure 3.26: Left: as Figure 3.25, but with smaller
smoothing bandwidth and tighter binning for the
contour lines. Right: with colour filling.

colour scale, and we added a call to coord_fixed to fix the aspect ratio of the plot,
to make sure that the mapping of data range to x- and�-coordinates is the same for
the two variables. Both of these issues merit a deeper look, and we’ll talk more about
plot shapes in Section 3.7.1 and about colours in Section 3.9.
The density based plotting methods in Figure 3.26 are more visually appealing and

interpretable than the overplotted point clouds of Figures 3.23 and 3.24, though we
have to be careful in using them as we loose a lot of the information on the outlier
points in the sparser regions of the plot. One possibility is using geom_point to add
such points back in.
But arguably the best alternative, which avoids the limitations of smoothing, is

hexagonal binning22. 22 Daniel B Carr, Richard J Littlefield, WL Nichol-
son, and JS Littlefield. Scatterplot matrix
techniques for large N. Journal of the American
Statistical Association, 82(398):424–436, 1987

library("hexbin")
scp + stat_binhex() + coord_fixed()
scp + stat_binhex(binwidth = c(�.2, �.2)) + colourscale +
coord_fixed()

Figure 3.27: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and customized
colour scale.

3.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the information is
conveyed well. By default, the shape parameter, that is, the ratio, between the height
of the graph and its width, is chosen by ggplot2 based on the available space in the

http://cran.fhcrc.org/web/packages/ggplot2/index.html


���� ������� �������� �� � 19

current plotting device. The width and height of the device are specified when it is
opened in R, either explicitly by you or through default parameters23. Moreover, the 23 E. g., see the manual pages of the pdf and png

functions.graph dimensions also depend on the presence or absence of additional decorations,
like the colour scale bars in Figure 3.27.
There are two simple rules that you can apply for scatterplots:

• If the variables on the two axes are measured in the same units, then make
sure that the same mapping of data space to physical space is used – i. e., use
coord_fixed. In the scatterplots above, both axes are the logarithm to base 2 of
expression level measurements, that is a change by one unit has the same mean-
ing on both axes (a doubling of the expression level). Another case is principal
component analysis (PCA), where the x-axis typically represents component 1,
and the�-axis component 2. Since the axes arise from an orthonormal rotation
of input data space, we want to make sure their scales match. Since the variance
of the data is (by definition) smaller along the second component than along the
first component (or at most, equal), well-done PCA plots usually have a width that’s
larger than the height.

• If the variables on the two axes are measured in di�erent units, then we can still
relate them to each other by comparing their dimensions. The default in many
plotting routines in R, including ggplot2, is to look at the range of the data and map
it to the available plotting region. However, in particular when the data more or
less follow a line, looking at the typical slope of the line can be useful. This is called
banking24. 24 W. S. Cleveland, M. E. McGill, and R. McGill. The

shape parameter of a two-variable graph. Journal
of the American Statistical Association, 83:
289–300, 1988

To illustrate banking, let’s use the classic sunspot data from Cleveland’s paper.

library("ggthemes")
sunsp = data.frame(year = time( sunspot.year ),

number = as.numeric( sunspot.year ))
sp = ggplot(sunsp, aes(x = year, y = number)) + geom_line()
sp

The resulting plot is shown in the upper panel of Figure 3.28. We can clearly see
long-term fluctuations in the amplitude of sunspot activity cycles, with particularly
low maximum activities in the early 1700s, early 1800s, and around the turn of the
20th century. But now lets try out banking.

ratio = with(sunsp, bank_slopes(year, number))
sp + coord_fixed(ratio = ratio)

What the algorithm does is to look at the slopes in the curve, and in particular, the
above call to bank_slopes computes the median absolute slope, and then with the
call to coord_fixed we shape the plot such that this quantity becomes 1. The result
is shown in the lower panel of Figure 3.28. Quite counter-intuitively, even though the
plot takes much smaller space, we see more on it! Namely, we can see the saw-tooth
shape of the sunspot cycles, with sharp rises and more slow declines.

3.8 3–5D Data

Sometimes we want to show the relations between more than two variables. Obvious
choices for including additional dimensions are the plot symbol shapes and colours.

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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Figure 3.28: The sunspot data. In the upper panel,
the plot shape is roughly quadratic, a frequent
default choice. In the lower panel, a technique
called banking was used to choose the plot shape.

The geom_point geometric object o�ers the following aesthetics (beyond x and y):
• fill
• colour
• shape
• size
• alpha
They are explored in the manual page of the geom_point function. fill and
colour refer to the fill and outline colour of an object; alpha to its transparency
level. Above, in Figures 3.24 and following, we have used colour or transparency to
reflect point density and avoid the obscuring e�ects of overplotting. Instead, we can
use them show other dimensions of the data (but of course we can only do one or the
other). In principle, we could use all the 5 aesthetics listed above simultaneously to
show up to 7-dimensional data; however, such a plot would be hard to decipher, and
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most often we are better o� with one or two additional dimensions and mapping them
to a choice of the available aesthetics.

3.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple plots that
result from repeatedly subsetting (or “slicing”) our data based on one (or more) of
the variables, so that we can visualize each part separately. So we can, for instance,
investigate whether the observed patterns among the other variables are the same or
di�erent across the range of the faceting variable. Let’s look at an example25 25 The first two lines this code chunk are not

strictly necessary – they’re just reformatting the
lineage column of the dftx data.frame, to make
the plots look better.

library("magrittr")
dftx$lineage %<>% sub("^$", "no", .)
dftx$lineage %<>% factor(levels = c("no", "EPI", "PE", "FGF4-KO"))

ggplot(dftx, aes( x = X1426642_at, y = X1418765_at)) +
geom_point() + facet_grid( . ~ lineage )
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Figure 3.29: An example for faceting: the
same data as in Figure 3.9, but now split by the
categorical variable lineage.

The result is shown in Figure 3.29. We used the formula language to specify by
which variable we want to do the splitting, and that the separate panels should be in
di�erent columns: facet_grid( . ⇠ lineage ). In fact, we can specify two
faceting variables, as follows; the result is shown in Figure 3.30.

ggplot( dftx,
aes( x = X1426642_at, y = X1418765_at)) + geom_point() +
facet_grid( Embryonic.day ~ lineage )

Another useful function is facet_wrap: if the faceting variables has too many
levels for all the plots to fit in one row or one column, then this function can be used
to wrap them into a specified number of columns or rows.
We can use a continuous variable by discretizing it into levels. The function cut is

useful for this purpose.

ggplot(mutate(dftx, Tdgf1 = cut(X145�989_at, breaks = 4)),
aes( x = X1426642_at, y = X1418765_at)) + geom_point() +
facet_wrap( ~ Tdgf1, ncol = 2 )

We see in Figure 3.31 that the number of points in the four panel is di�erent, this
is because cut splits into bins of equal length, not equal number of points. If we want
the latter, then we can use quantile in conjunction with cut.
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Figure 3.30: Faceting: the same data as in
Figure 3.9, split by the categorical vari-
ables Embryonic.day (rows) and lineage
(columns).
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Figure 3.31: Faceting: the same data as in
Figure 3.9, split by the continuous variable
X145�989_at and arranged by facet_wrap.

Axes scales In Figures 3.29–3.31, the axes scales are the same for all plots. Alterna-
tively, we could let them vary by setting the scales argument of the facet_grid
and facet_wrap; this parameters allows you to control whether to leave the x-axis,
the�-axis, or both to be freely variable. Such alternatives scalings might allows us to
see the full detail of each plot and thus make more minute observations about what is
going on in each. The downside is that the plot dimensions are not comparable across
the groupings.

Implicit faceting You can also facet your plots (without explicit calls to facet_grid
and facet_wrap) by specifying the aesthetics. A very simple version of implicit
faceting is using a factor as your x-axis, such as in Figures 3.15–3.19

3.8.2 Interactive graphics

fixme: Vlad wrote: The plots generated in R are static images. For complex data it may
be useful to create interactive visualizations, which could be explored by navigating
a computer mouse through di�erent parts of the graphic to view pop-up annotations,
zooming in and out, pulling the graphic to rotate in the image space, etc.

plotly

A great web-based tool for interactive graphic generation is plotly You can view some
examples of interactive graphics online https://plot.ly. To create your own

https://plot.ly
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interactive plots in R use package plotly
You can learn how to use plotly by viewing examples and clicking on "Code" and

selecting R in "Language" menu.

ggvis

fixme: Describe

rgl, webgl

To generate 3D interactive graphics in R ... there is package rgl. fixme: More interesting
example. We can visualize the classic iris flower data set in a 3D scatter plot (Fig. 3.32). Figure 3.32: Scatter plot of iris data.

The iris data set is based on measurements of petal and sepal lengths and widths
for 3 species of iris flowers. The axes in Fig. 3.32 represent petal and sepal dimensions.
The color indicates which species the flower belongs to. Run the following code chunk
sequentially to view the 3D scatter plot in an interactive mode.
fixme: Make this code live again

library("rgl")
bbibrary("rglwidget")
with(iris, plot3d(Sepal.Length, Sepal.Width, Petal.Length,

type="s", col=as.numeric(Species)))
writeWebGL(dir=file.path(getwd(), "figure"), width=7��)

Function writeWebGL exports the 3D scene as an HTML file that can be viewed
interactively in a browser.

3.9 Colour

An important consideration when making plots is the colouring that we use in them.
Most R users are likely familiar with the built-in R colour scheme, used by base R
graphics, as shown in Figure 3.33.

pie(rep(1, 8), col=1:8)

1
23

4

5
6 7

8

Figure 3.33: Basic R colours.

These colour choices date back from 1980s hardware, where graphics cards han-
dled colours by letting each pixel either fully use or not use each of the three basic
colour channels of the display: red, green and blue (RGB): this leads to 23 = 8 combi-
nations, which lie at the 8 the extreme corners of the RGB color cube26 The colours in

26 Thus the 8th colour should be white; in R,
whose basic infastructure was put together when
more sophisticated graphics display were already
available, this was replaced by grey, as you can see
in Figure 3.33.

Figure 3.33 are harsh on the eyes, and there is no good excuse any more for creating
graphics that are based on this palette. Fortunately, the default colours used by some
of the more modern visualisation oriented packages (including ggplot2) are much
better already, but sometimes we want to make our own choices.
In Section 3.7 we saw the function scale_fill_gradientn, which allowed us

to create the colour gradient used in Figures 3.26 and 3.27 by interpolating the basic
colour palette defined by the function brewer.pal in the RColorBrewer package. This
package defines a great set of colour palettes, we can see all of them at a glance by
using the function display.brewer.all (Figure 3.34).

BrBG
PiYG
PRGn
PuOr
RdBu
RdGyRdYlBu

RdYlGn
Spectral
Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3
Blues
BuGn
BuPu
GnBu

Greens
Greys

OrangesOrRd
PuBu

PuBuGn
PuRd

PurplesRdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Figure 3.34: RColorBrewer palettes.

http://cran.fhcrc.org/web/packages/plotly/index.html
http://cran.fhcrc.org/web/packages/plotly/index.html
http://cran.fhcrc.org/web/packages/rgl/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
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display.brewer.all()

We can get information about the available colour palettes from the data.frame
brewer.pal.info.

head(brewer.pal.info)
## maxcolors category colorblind

## BrBG 11 div TRUE

## PiYG 11 div TRUE

## PRGn 11 div TRUE

## PuOr 11 div TRUE

## RdBu 11 div TRUE

## RdGy 11 div FALSE

table(brewer.pal.info$category)
##

## div qual seq

## 9 8 18

The palettes are divided into three categories:
• qualitative: for categorical properties that have no intrinsic ordering. The Paired
palette supports up to 6 categories that each fall into two subcategories - like
before and after, with and without treatment, etc.

• sequential: for quantitative properties that go from low to high
• diverging: for quantitative properties for which there is a natural midpoint
or neutral value, and whose value can deviate both up- and down; we’ll see an
example in Figure 3.36.

To obtain the colours from a particular palette we use the function brewer.pal. Its
first argument is the number of colours we want (which can be less than the available
maximum number in brewer.pal.info).

brewer.pal(4, "RdYlGn")
## [1] "#D7191C" "#FDAE61" "#A6D96A" "#1A9641"

If we want more than the available number of preset colours (for example so we
can plot a heatmap with continuous colours) we can use the colorRampPalette
function command to interpolate any of the RColorBrewer presets – or any set of
colours:

Figure 3.35: A quasi-continuous colour palette
derived by interpolating between the colours
darkorange3, white and darkblue.

mypalette = colorRampPalette(c("darkorange3", "white",
"darkblue"))(1��)

head(mypalette)
## [1] "#CD66��" "#CE69�5" "#CF6C�A" "#D�6F�F" "#D17214" "#D27519"

par(mai = rep(�.1, 4))
image(matrix(1:1��, nrow = 1��, ncol = 1�), col = mypalette,

xaxt = "n", yaxt = "n", useRaster = TRUE)

3.9.1 Heatmaps

Heatmaps are a powerful of visualising large, matrix-like datasets and giving a quick
overview over the patterns that might be in there. There are a number of heatmap
drawing functions in R; one that is particularly versatile and produces good-looking
output is the function pheatmap from the eponymous package. In the code below,
we first select the top 500 most variable genes in the dataset x, and define a function

http://cran.fhcrc.org/web/packages/RColorBrewer/index.html
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rowCenter that centers each gene (row) by subtracting the mean across columns. By
default, pheatmap uses the RdYlBu colour palette from RcolorBrewer in conjuction
with the colorRampPalette function to interpolate the 11 colour into a smooth-
looking palette (Figure 3.36).

library("pheatmap")
topGenes = order(rowVars(exprs(x)), decreasing = TRUE)[ seq_len(5��) ]
rowCenter = function(x) { x - rowMeans(x) }
pheatmap( rowCenter(exprs(x)[ topGenes, ] ),
show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 1�1),
annotation_col = pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate") ],
annotation_colors = list(
sampleGroup = groupColour,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),
Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)], c("E3.25", "E3.5", "E4.5")),
ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"), levels(x$ScanDate))

),

cutree_rows = 4

)

sampleGroup
Embryonic.day
ScanDate

ScanDate
2010−06−30
2010−07−01
2010−07−02
2010−09−16
2011−03−15
2011−03−16
2012−03−16
2012−08−16
2013−03−05

Embryonic.day
E3.25
E3.5
E4.5

sampleGroup
E3.25
E3.25 (FGF4−KO)
E3.5 (EPI)
E3.5 (FGF4−KO)
E3.5 (PE)
E4.5 (EPI)
E4.5 (FGF4−KO)
E4.5 (PE)

−4

−2

0

2

4

Figure 3.36: A heatmap of relative expression
values, i. e., log2 fold change compared to the
average expression of that gene (row) across
all samples (columns). The colour scale uses a
diverging palette, whose neutral midpoint is at 0.

Let us take a minute to deconstruct the rather massive-looking call to pheatmap.
The options show_rownames and show_colnames control whether the row and
column names are printed at the sides of the matrix. Because our matrix is large in
relation to the available plotting space, the labels would anyway not be readable, and

http://cran.fhcrc.org/web/packages/RcolorBrewer/index.html
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we suppress them. The annotation_col argument takes a data frame that carries
additional information about the samples. The information is shown in the coloured
bars on top of the heatmap. There is also a similar annotation_row argument,
which we haven’t used here, for coloured bars at the side. annotation_colors
is a list of named vectors by which we can override the default choice of colours
for the annotation bars. Finally, with the cutree_rows argument we cut the row
dendrogram into four (an arbitrarily chosen number) clusters, and the heatmap shows
them by leaving a bit of white space in between. The pheatmap function has many
further options, and if you want to use it for your own data visualisations, it’s worth
studying them.

3.9.2 Colour spaces

Colour perception in humans27 is three-dimensional28. There are di�erent ways 27 H. von Helmholtz. Handbuch der Physiologis-
chen Optik. Leopold Voss, Leipzig, 1867
28 Physically, there is an infinite number of wave-
lengths of light, and an infinite number of ways of
mixing them.

of parameterizing this space. Above we already encountered the RGB color model,
which uses three values in [0,1], for instance at the beginning of Section 3.4, where we
printed out the contents of groupColour:

groupColour[1]

## E3.25

## "#CAB2D6"

Here, CA is the hexadecimal representation for the strength of the red colour
channel, B2 of the green and D6 of the green colour channel. In decimal, these
numbers are 202, 178 and 214, respectively. The range of these values goes from to 0 to
255, so by dividing by this maximum value, an RGB triplet can also be thought of as a
point in the three-dimensional unit cube.

Figure 3.37: Circles in HCL colorspace. Upper
panel: The luminosity L is fixed to 75, while the
angular coordinateH (hue) varies from 0 to 360
and the radial coordinateC = 0, 10, . . . , 60.
Lower panel: constant chromaC = 50,H as
above, and varying luminosity L = 10, 20, . . . , 90.

The R function hcl uses a di�erent coordinate system, which consists of the three
coordinates hueH , an angle in [0, 360], chromaC , and lightness L as a value in [0, 100].
The possible values forC depend on some constraints, but are generally between 0
and 255. The hcl function corresponds to polar coordinates in the CIE-LUV29 and is

29 CIE: Commission Internationale de l’Éclairage –
see e. g. Wikipedia for more on this.

designed for area fills. By keeping chroma and luminescence coordinates constant
and only varying hue, it is easy to produce color palettes that are harmonious and
avoid irradiation illusions that make light coloured areas look bigger than dark ones.
Our attention also tends to get drawn to loud colours, and fixing the value of chroma
makes the colors equally attractive to our eyes.
There are many ways of choosing colours from a colour wheel. Triads are three

colours chosen equally spaced around the colour wheel; for example,H = 0, 120, 240
gives red, green, and blue. Tetrads are four equally spaced colours around the colour
wheel, and some graphic artists describe the e�ect as "dynamic". Warm colours are
a set of equally spaced colours close to yellow, cool colours a set of equally spaced
colours close to blue. Analogous colour sets contain colours from a small segment
of the colour wheel, for example, yellow, orange and red, or green, cyan and blue.
Complementary colours are colours diametrically opposite each other on the colour
wheel. A tetrad is two pairs of complementaries. Split complementaries are three
colours consisting of a pair of complementaries, with one partner split equally to
each side, for example,H = 60, 240 � 30, 240 + 30. This is useful to emphasize the
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di�erence between a pair of similar categories and a third di�erent one. A more
thorough discussion is provided in the references 30. 30 J. Mollon. Seeing colour. In T. Lamb and

J. Bourriau, editors, Colour: Art and Science.
Cambridge Unversity Press, 1995; and Ross Ihaka.
Color for presentation graphics. In Kurt Hornik
and Friedrich Leisch, editors, Proceedings of the
3rd International Workshop on Distributed
Statistical Computing. Vienna, Austria, 2003

Lines vs areas For lines and points, we want that they show a strong contrast to
the background, so on a white background, we want them to be relatively dark (low
lightness L). For area fills, lighter, more pastell-type colours with low to moderate
chromatic content are usually more pleasant.

3.10 Data Transformations

Plots in which most points are huddled up in one area, with a lot of sparsely populated
space, are di�cult to read. If the histogram of the marginal distribution of a variable
has a sharp peak and then long tails to one or both sides, transforming the data can
be helpful. These considerations apply both to x and y aesthetics, and to colour
scales. In the plots of this chapter that involved the microarray data, we used the
logarithmic transformation31 – not only in scatterplots like Figure 3.23 for the x 31 We used it implicitly since the data in

the ExpressionSet object x already come log-
transformed.

and�-coordinates, but also in Figure 3.36 for the colour scale that represents the
expression fold changes. The logarithm transformation is attractive because it has a
definitive meaning - a move up or down by the same amount on a log-transformed
scale corresponds to the same multiplicative change on the original scale: log(ax) =
loga + logx .
Sometimes the logarithm however is not good enough, for instance when the

data include zero or negative values, or when even on the logarithmic scale the data
distribution is highly uneven. From the upper panel of Figure 3.38, it is easy to take
away the impression that the distribution of M depends on A, with higher variances
for low A. However, this is entirely a visual artefact, as the lower panel confirms: the
distribution of M is independent of A, and the apparent trend we saw in the upper
panel was caused by the higher point density at smaller A.

A = exprs(x)[,1]
M = rnorm(length(A))
qplot(A, M)
qplot(rank(A), M)

Question 3.10.1 Can the visual artefact be avoided by using a density- or binning-based
plotting method, as in Figure 3.27?
Question 3.10.2 Can the rank transformation also be applied when choosing colour scales
e. g. for heatmaps? What does histogram equalization in image processing do?

Figure 3.38: The e�ect of rank transformation on
the visual perception of dependency.

3.11 Saving Figures

Just as important as plotting figures is saving them for later use.
ggplot2 has a built-in plot saving function called ggsave, which if run by itself

defaults to saving the last plot you made with the size of the graphics device that it
was/is open in.

ggsave("myplot1.png")

http://cran.fhcrc.org/web/packages/ggplot2/index.html
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Or you can specify a particular plot that you want to save, say, the sunspot plot
from earlier.

ggsave("myplot2.pdf", plot = sp)

There are two major ways of storing plots: vector graphics and raster (pixel)
graphics. In vector graphics, the plot is stored as a series of geometrical primitives
such as points, lines, curves, shapes and typographic characters. The prefered format
in R for saving plots into a vector graphics format is PDF. In raster graphics, the plot
is stored in a dot matrix data structure. The main limitation of raster formats is their
limited resolution, which depends on the number of pixels available; in R, the most
commonly used device for raster graphics output is png. Generally, it’s preferable
to save your graphics in a vector graphics format, since it is always possible later to
convert a vector graphics file into a raster format of any desired resolution, while the
reverse is in principle limited by the resolution of the original file. And you don’t want
the figures in your talks or papers look poor because of pixelisation artefacts!

3.12 Biological Data with ggbio

fixme: Expand this section... do something more interesting
A package that can be really useful for biological data is an o�shoot of ggplot2

made for biology-specific plots called ggbio. One example is plotting and highlighting
ideograms32 32 The term ideogram generally means a graphic

that represents a concept, specifically in bi-
ology we usually are referring to plots of the
chromosome, like in Figure 3.39.

Load the ideogram cytoband information for the hg19 build of the human genome

library("ggbio")
data( hg19IdeogramCyto, package = "biovizBase" )
plotIdeogram( hg19IdeogramCyto, subchr = "chr1" )

chr1

chr1y

Figure 3.39: Chromosome 1 of the human genome:
ideogram plot.

fixme: Vlad wrote In addition to cytoband information, one can use ggbio to visualize
gene model tracks on which coding regions (CDS), untranslated regions (UTR), introns,
exons and non-genetic regions are indicated.
To create a gene model track for a subset of 500 hg19 RNA editing sites use the

darned_hg19_subset5�� data set.

data(darned_hg19_subset5��, package = "biovizBase")
dn = darned_hg19_subset5��

library(GenomicRanges)
library(ggbio)

chr1
chr2
chr3
chr4
chr5
chr6
chr7
chr8
chr9
chr10
chr11
chr12
chr13
chr14
chr15
chr16
chr17
chr18
chr19
chr20
chr21
chr22
chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg
3

5

C

Figure 3.40: Karyogram of 22 chromosomes

fixme: Need to fix the par of the pdf being saved. Right now x-axis labels get squeezed
together
Note that the information on sequence lengths is stored in ideoCyto data set,

which provides hg19 genome and cytoband information.

data(ideoCyto, package = "biovizBase")
seqlengths(dn) = seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]

Use function keepSeqlevels to subset the first 22 chromosomes and the X
chromosome and plot the karyogram.

dn = keepSeqlevels(dn, pasteı("chr", c(1:22, "X")))
autoplot(dn, axis.text.x=FALSE, layout = "karyogram", aes(color = exReg, fill = exReg))

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
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The categorical variable ’exReg’ is included with the data and marks CDS (coding
regions), 3’-UTR and 5’-UTR, which correspond to ’C’, ’3’ and ’5’ in the legend of the
figure, respectively.

3.13 Recap of this Chapter

• You have had an introduction to the base plotting functions in R. They are widely
used and can be convenient for quick data exploration.

• You should now be comfortable making beautiful, versatile and easily extendable
plots using ggplot2’s qplot or ggplot functions.

• Don’t be afraid of setting up your data for faceting – this is a great quick way to
look at many di�erent ways to slice the data in di�erent wats

• Now you are prepared to explore ggplot2 and plotting in general on your own.

3.14 Exercises

Exercise 3.1 (themes) Explore how to change the visual appearance of plots with themes.
For example:

qplot(1:1�,1:1�)
qplot(1:1�,1:1�) + theme_bw()

Exercise 3.2 (colour names in R) Have a look at http://research.stowers-institute.
org/efg/R/Color/Chart

Exercise 3.3 (ggxkcd) On a lighter note, you can even modify ggplot2 to make plots in the
style of the popular webcomic XKCD. You do this through manipulating the font and themes
of ggplot2 objects. See http://stackoverflow.com/questions/12675147/
how-can-we-make-xkcd-style-graphs-in-r.

http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://research.stowers-institute.org/efg/R/Color/Chart
http://research.stowers-institute.org/efg/R/Color/Chart
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://www.xkcd.com
http://stackoverflow.com/questions/12675147/how-can-we-make-xkcd-style-graphs-in-r
http://stackoverflow.com/questions/12675147/how-can-we-make-xkcd-style-graphs-in-r




Chapter 6

Multiple Testing

Figure 6.1: From http://xkcd.com/882

Hypothesis testing is one of the workhorses of science. It is how we draw conclusions
or make decisions based on finite samples of data. For instance, new drugs are usually
approved on the basis of clinical trials that aim to decide whether the drug has better
e�cacy (and an acceptable trade-o� of side e�ects) compared to the other available
options. Such trials are expensive and can take a long time. Therefore, the number
of patients we can enroll is limited, and we need to base our inference on a limited
sample of observed patient responses. The sample needs to be big enough allow us to
make a reliable conclusion, but small enough not to waste precious resources or time.
The machinery of hypothesis testing was developed largely with this application in
mind, although today it is used much more widely.

6.1 Goals for this Chapter

• Familiarize ourselves with the machinery of hypothesis testing, its vocabulary, its
purpose, and its strengths and limitations.

• Understand what multiple testing means.
• See that multiple testing is not a problem — but rather, an opportunity, as it fixes
many of the limitations of single testing.

• Understand the false discovery rate.
• Learn how to make diagnostic plots.
• Use hypothesis weighting to increase the power of our analyses.

6.1.1 Drinking from the firehose

If statistical testing —reasoning with uncertainty— seems a hard task if you do it for
one single decision (or test), then brace yourself: in genomics, or more generally
with “big data”, we need to accomplish it not once, but thousands or millions of times.
You’ve already seen in this Chapter 7, where we analysed RNA-Seq data for di�erential
expression. We applied a hypothesis test to each of the genes, that is, we did several
thousand tests. Similarly, in whole genome sequencing, we scan every position in
the genome for a di�erence between the sample at hand and a reference (or, another
sample): that’s on the order of 3 billion tests if we are looking at human data! In RNAi
or chemical compound screening, we test each of the reagents for an e�ect in the

http://xkcd.com/882
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assay, compared to control: that’s again tens of thousands, if not millions of tests.

Figure 6.2: Modern biology often involes navigat-
ing a deluge of data. Source

Yet, in many ways, the task becomes simpler, not harder. Since we have so much
data, and so many tests, we can ask questions like: are the assumptions of the tests
actually met by the data? What are the prior probabilities that we should assign to the
possible outcomes of the tests? Answers to these questions can be incredibly helpful,
and we can address them because of the multiplicity. So we should think about it not
as a “multiple testing problem”, but as an opportunity!
There is a powerful premise in data-driven sciences: we usually expect that most

tests will not be rejected. Out of the thousands or millions of tests (genes, positions in
the genome, RNAi reagents), we expect that only a small fraction will be interesting,
or “significant”. In fact, if that is not the case, if the hits are not rare, then arguably
our analysis method –serially univariate screening of each variable for association
with the outcome– is not suitable for the dataset. Either we need better data (a more
specific assay), or a di�erent analysis method, e. g., a multivariate model.
Since most nulls are true, we can use the behaviour of the many test statistics and

p-values to empirically understand their null distributions, their correlations, and so
on. Rather than having to rely on assumptions we can check them empirically!

6.1.2 Testing vs classification

There are many methodological similarities between hypothesis testing and classifica-
tion, but the di�erences are good to keep in mind. In both cases, we aim to use data to
choose between several possible decisions. For instance, we might use the measured
expression level of a marker gene to decide whether the cells we’re studying are from
cell type A or B. If we have no prior assumption, and if we’re equally worried about
mistaking an A for a B, or vice versa, then we’re best served by the machinery of
classification as covered briefly in Chapter ?? and in detail in 1. On the other hand, if – 1 Trevor Hastie, Robert Tibshirani, and Jerome

Friedman. The Elements of Statistical Learning.
Springer, 2008

before seeing the data– we have a preference for A, and need evidence to be convinced
otherwise, then the machinery of hypothesis testing is right for us. For instance, if a
disease is currently treated with some established medication, and someone comes
up with a proposal to treat it with a di�erent treatment instead, the burden of proof
should be with them, and the data should prove the benefit of the new treatment with
high certainty. We can also think of this as an application of Occam’s razor2 – don’t 2 See also https://en.wikipedia.org/

wiki/Occam%27s_razorcome up with a more complicated solution if a simpler one does the job.

6.2 An Example: Coin Tossing

To understand multiple tests, let’s first review the mechanics of single hypothesis
testing. For example, suppose we are flipping a coin to see if it is a fair coin3. We flip 3 The same kind of reasoning, just with more

details, applies to any kind of gambling. Here
we stick to coin tossing since everything can be
worked out easily, and it shows all the important
concepts.

the coin 100 times and each time record whether it came up heads or tails. So, we
have a record that could look something like this:
H H T T H T H T T ...

Which we can simulate in R. We set probHead di�erent from 1/2, so we are
sampling from a biased coin:

http://ak1.picdn.net/shutterstock/videos/945751/preview/stock-footage-open-butt-hydrant-flowing-water-into-a-industrial-pond.jpg
https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/Occam%27s_razor
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set.seed(�xdada)
numFlips <- 1��

probHead <- �.6

coinFlips <- sample(c("H", "T"), size = numFlips,
replace = TRUE, prob = c(probHead, 1 - probHead))

head(coinFlips)
## [1] "T" "T" "H" "T" "H" "H"

Now, if the coin were fair, we expect half of the time to get heads. Let’s see.

table(coinFlips)
## coinFlips

## H T

## 59 41

So that is di�erent from 50/50. Suppose we didn’t know whether the coin is fair
or not – but our prior assumption is that coins are, by and large, fair: would these
observed data be strong enough to make us conclude that this coin isn’t fair? We
know that random sampling di�erences are to be expected. To decide, let’s look at the
sampling distribution of our test statistic –the total number of heads seen in 100 coin
tosses– for a fair coin4. This is really easy to work out with elementary combinatorics: 4 We haven’t really defined what we mean be

fair – a reasonable definition would be that head
and tail are equally likely, and that the outcome
each coin toss is completely independent of the
previous ones. For more complex applications,
nailing down the exact null hypothesis can take a
bit more thought.

P(K = k |n,p) = *
,
n

k
+
-p

k (1 �p)n�k (6.1)

Let’s parse the notation: n is the number of coin tosses (100) and p is the probability
of head (0.5 if we assume a fair coin). k is the number of heads. Statisticians like to
make a di�erence between all the possible values of a statistic and the one that was
observed, and we use the lower case k for the possible values (so k can be anything
between 0 and 100), and the upper caseK for the observed value. We pronounce the
left hand side of the above equation as “the probability that the observed number
takes the value k , given that n is what it is and p is what it is”.
Let’s plot Equation (6.1); for good measure, we also mark the observed value

numHeads with a vertical blue line.

k <- �:numFlips

numHeads <- sum(coinFlips == "H")
binomDensity <- data.frame(k = k,

p = dbinom(k, size = numFlips, prob = �.5))

library("ggplot2")
ggplot(binomDensity) +
geom_bar(aes(x = k, y = p), stat = "identity") +
geom_vline(xintercept = numHeads, col="blue")
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Figure 6.3: The binomial distribution for the
parameters n = 100 and p = 0.5, according to
Equation (6.1).

Suppose we didn’t know about Equation (6.1). We could still manoeuvre our way
out by simulating a reasonably good approximation of the distribution.

numSimulations <- 1����

outcome <- replicate(numSimulations, {
coinFlips <- sample(c("H", "T"), size = numFlips,
replace = TRUE, prob = c(�.5, �.5))

sum(coinFlips == "H")
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})

ggplot(data.frame(outcome)) + xlim(�, 1��) +
geom_histogram(aes(x = outcome), binwidth = 1, center = �) +
geom_vline(xintercept = numHeads, col="blue")

0

200

400

600

800

0 25 50 75 100
outcome

co
un
t

Figure 6.4: An approximation of the binomial dis-
tribution from 104 simulations (same parameters
as Figure 6.3).

As expected, the most likely number of heads is 50, that is, half the number of coin
flips. But we see that other numbers near 50 are also not unlikely. How do we quantify
whether the observed value, 59, is among those values that we are likely to see from a
fair coin, or whether its deviation from the expected value is already big enough for
us to conclude with enough confidence that the coin is biased? We divide the set of
all possible k ’s (0 to 100) in two complementary subsets, the acceptance region and
the rejection region. A natural choice5 is to fill up the rejection region with as many

5 More on this below.
k as possible while keeping the total probability below some threshold � (say, 0.05). So
the rejection set consists of the values of k with the smallest probabilities (6.1), so that
their sum remains  � .

library("dplyr")
alpha <- �.�5

binomDensity <- arrange(binomDensity, p) %>%
mutate(reject = (cumsum(p) <= alpha))

ggplot(binomDensity) +
geom_bar(aes(x = k, y = p, col = reject), stat = "identity") +
scale_colour_manual(
values = c(‘TRUE‘ = "red", ‘FALSE‘ = "darkgrey")) +

geom_vline(xintercept = numHeads, col="blue") +
theme(legend.position = "none")
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Figure 6.5: As Figure 6.3, with rejection region
(red) that has been chosen such that it contains
the maximum number of bins whose total area is
at most � = 0.05.

In the code above, we used the functions arrange and mutate from the dplyr
package to sort the the p-values from lowest to highest, compute the cumulative sum
(cumsum), and stop rejecting once it exceeds alpha.
The explicit summation over the probabilities is clumsy, we did it here for peda-

gogic value. For one-dimensional distributions, R provides not only functions for the
densities (e. g., dbinom) but also for the cumulative distribution functions (pbinom),
which are more precise and faster than cumsum over the probabilities. These should
be used in practice.
We see in Figure 6.5 that the observed value, 59, lies in the grey shaded area, so we

would not reject the null hypothesis of a fair coin from these data at a significance
level of � = 0.05.
Question 6.2.1 Does the fact that we don’t reject the null hypothesis mean that the coin is
fair?
Question 6.2.2 Would we have a better chance of detecting that the coin is not fair if we did
more coin tosses? How many?
Question 6.2.3 If we repeated the whole procedure and again tossed the coin 100 times,
might we then reject the null hypothesis?
Question 6.2.4 The rejection region in Figure 6.5 is asymmetric - its left part ends with
k = 40, while its right part starts with k = 61. Why is that? Which other ways of defining the
rejection region might be useful?

http://cran.fhcrc.org/web/packages/dplyr/index.html
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The binomial test is such a frequent activity that it has been wrapped into a single
function, and we can compare its output to our results

binom.test(x = numHeads, n = numFlips, p = �.5)
##

## Exact binomial test

##

## data: numHeads and numFlips

## number of successes = 59, number of trials = 1��, p-value =

## �.�8863

## alternative hypothesis: true probability of success is not equal to �.5

## 95 percent confidence interval:

## �.4871442 �.68738��

## sample estimates:

## probability of success

## �.59

6.3 The Five Steps of Hypothesis Testing

Let’s summarise the general principles6 of hypothesis testing: 6 These are idealised; for a reality check, see below,
Section 6.6.1. Choose an experimental design and a data summary function for the e�ect that

you are interested in, the test statistic.
2. Set up a null hypothesis, which is a simple, computationally tractable model of
reality that lets you compute the null distribution, i. e., the possible outcomes of
the test statistic and their probabilities.

3. Decide on the rejection region, i. e., a subset of possible outcomes whose total
probability is small.

4. Do the experiment, collect data, compute the test statistic.
5. Make a decision: reject the null hypothesis if the test statistic is in the rejection
region.
The null hypothesis we used in the coin tossing example was that heads and Null hypothesis

tails are equally likely, and that the outcome of each coin toss is independent of
the previous ones. This is idealized: a real coin might have some, if ever so slight
irregularities, so that the probability of head might be 0.500001; but here we don’t
worry about that, nor about any possible e�ects of air drag, elasticity of the material
on which the coin falls, and so on. It is also computationally tractable, namely, with
the binomial distribution.
The test statistic in our example was the total number of heads. Suppose we Test statistic

observed 50 tails in a row, and then 50 heads in a row. Our test statistic ignores
the order of the outcomes, and we would conclude that this is a perfectly fair coin.
However, if we used a di�erent test statistic (say, the number of times we see two tails
in a row), we might notice that there is something funny about this coin.
Question 6.3.1 What is the null distribution of this di�erent test statistic?
Question 6.3.2 Would a test based on that statistic be generally preferable?
What we have just done is that we looked at two di�erent classes of alternative

hypotheses. The first class of alternatives was that subsequent coin tosses are still Alternative hypotheses
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independent of each other, but that the probability of heads di�ered from 0.5 The sec-
ond one was that the overall probability of heads may still be 0.5, but that subsequent
coin tosses were correlated.
Question 6.3.3 Recall the concept of su�cient statistics from Chap??. Is the total number
of heads a su�cient statistic for the binomial distribution? Why might be it be a good test
statistic for our first class of alternatives, but not for the second?
Question 6.3.4 Does a test statistic always have to be su�cient?
So let’s remember that we typically have multiple possible choices of test statistic

(in principle it could be any numerical summary of the data). Making the right choice
is important for getting a test with good power7. What the right choice is will depend 7 See Section 6.4.

on what kind of alternatives we expect. This is not always easy to know in advance.
Once we have chosen the test statistic we need to compute its null distribution.

You can do this either with pencil and paper or by computer simulations. A pencil Parametric theory versus simulation

and paper solution that leads to a closed form mathematical expression (like Equa-
tion (6.1)) has the advantage that it holds for a range of model parameters of the null
hypothesis (such as n, p). And it can be quickly computed for any specific set of param-
eters. But it is not always as easy as in the coin tossing example. Sometimes a pencil
and paper solution is impossibly di�cult to compute. At other times, it may require
simplifying assumptions. An example is a null distribution for the t-statistic (which
we will see later in this chapter). We can compute one if we assume that the data
are independent and Normal distributed, the result is called the t-distribution. Such
modelling assumptions may be more or less realistic. Simulating the null distribution
o�ers a potentially more accurate, more realistic and perhaps even more intuitive
approach. The drawback of simulating is that it can take a rather long time, and we
have to work extra to get a systematic understanding of how varying parameters
influence the result. Generally, it is more elegant to use the parametric theory when it
applies8. When you are in doubt, simulate – or do both. 8 The assumptions don’t need to be exactly true

– it is su�cient if the theory’s predictions are an
acceptable approximation of the truth.

As for the rejection region: how small is small enough? That is your choice of the

Rejection regionsignificance level � , which is the total probability of the test statistic falling into this
region if the null hypothesis is true9. Even when � is given, the choice of the rejection 9 Some people at one point in time for a particular

set of questions colluded on � = 0.05 as being
“small”. But there is nothing special about this
number.

region is not unique. A further condition that we require from a good rejection region
is that the probability of the test statistic falling into it is as large possible if the null
hypothesis is indeed false. In other words, we want our test to have high power.
In Figure 6.5, the rejection region is split between the two tails of the distribution.

This is because we anticipate that unfair coins could have a bias either towards head
or toward tail; we don’t know. If we did know, we could instead concentrate our
rejection region all on the appropriate side, e. g., the right tail if we think the bias
would be towards head. Such choices are also refered to as two-sided and one-sided
tests.

6.4 Types of Error

Having set out the mechanics of testing, we can assess how well we are doing. Ta-
ble 6.2 compares reality (whether or not the null hypothesis is in fact true) with the
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decision whether or not to reject it.

Test vs reality Null hypothesis is true . . . is false

Reject null hypothesis Type I error (false positive) True positive

Do not reject True negative Type II error (false negative)

Table 6.2: Types of error in a statistical test.

The two types of error we can make are in the lower left and upper right cells
of the table. It’s always possible to reduce one of the two error types on the cost
of increasing the other one. The real challenge is to find an acceptable trade-o�
between both of them. This is exemplified in Figure 6.6. We can always decrease the
false positive rate (FPR) by shifting the threshold to the right. We can become more
“conservative”. But this happens at the price of higher false negative rate (FNR).
Analogously, we can decrease the FNR by shifting the threshold to the left. But then
again, this happens at the price of higher FPR. A bit on terminology: the FPR is the
same as the probability � that we mentioned above. 1 � � is also called the specificity
of a test. The FNR is sometimes also called � , and 1 � � the power, sensitivity or true
positive rate of a test.
Question 6.4.1
At the end of Section 6.3 we learned about one- and two-sided tests. Why does this distinction
exist – why don’t we alway just use the two-sided test, which is sensitive to a larger class of
alternatives?
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test statistic

y

Figure 6.6: The trade-o� between type I and II
errors. The densities represent the distributions
of a hypothetical test statistic either under the
null or the alternative. The peak on the left
(light and dark blue plus dark red) represents
the test statistic’s distribution under the null. It
integrates to 1. Suppose the decision boundary is
the black line and the hypothesis is rejected if the
statistic falls to the left. The probability of a false
positive (the FPR) is then simply the dark red
area. Similarly, if the peak on the right (light and
dark red plus dark blue area) is the test statistic’s
distribution under the alternative, the probability
of a false negative (the FNR) is the dark blue area.

6.5 The t-test

Many experimental measurements are reported as real numbers, and the simplest
comparison we can make is between two groups, say, cells treated with a substance
compared to cells that are not. The basic test for such situations is the t-test. The test
statistic is defined as

t = c
m1 �m2

s
, (6.2)

wherem1 andm2 are the mean of the values in the two groups, s is the pooled stan-
dard deviation and c is a constant that depends on the sample sizes, i. e., the numbers
of samples n1 and n2 in the two groups. To be totally explicit,

m� =
1
n�

n�X

i=1
x�,i � = 1, 2

s2 =
1

n1 +n2 � 2
*.
,
n1X

i=1

�
x1,i �m1

�2
+

n2X

j=1

�
x2,j �m2

�2+/
-

c =

r
n1n2

n1 +n2
. (6.3)

where x�,i is the ith data point in the �th group. Let’s try this out with the PlantGrowth
data from R’s datasets package.
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Figure 6.7: The PlantGrowth data.

http://cran.fhcrc.org/web/packages/datasets/index.html
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data("PlantGrowth")
ggplot(PlantGrowth, aes(y = weight, x = group, col = group)) +
geom_jitter(height = �, width = �.4) +
theme(legend.position = "none")

tt <- with(PlantGrowth,
t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

tt

##

## Two Sample t-test

##

## data: weight[group == "ctrl"] and weight[group == "trt2"]

## t = -2.134, df = 18, p-value = �.�4685

## alternative hypothesis: true difference in means is not equal to �

## 95 percent confidence interval:

## -�.98�338117 -�.��7661883

## sample estimates:

## mean of x mean of y

## 5.�32 5.526

Question 6.5.1 What do you get from the comparison with trt1? What for trt1 versus
trt2?
Question 6.5.2 What is the significance of the var.equal = TRUE in the above call to
t.test?
Question 6.5.3 Rewrite the above call to t.test using the formula interface, i. e., by
using the notation weight ⇠ group.
To compute the p-value, the t.test function uses the asymptotic theory for the
t-statistic (6.2); this theory states that under the null hypothesis of equal means
in both groups, this quantity follows a known, mathematical distribution, the so-
called t-distribution with n1 + n2 degrees of freedom. The theory uses additional
technical assumptions, namely that the data are independent and come from a
Normal distribution with the same standard deviation. We could be worried about
these assumptions. Clearly they do not hold: weights are always positive, while the
Normal distribution extends over the whole real axis. The question is whether this
deviation from the theoretical assumption makes a real di�erence. We can use sample
permutations to figure this out.
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Figure 6.8: The null distribution of the (absolute)
t -statistic determined by simulations – namely,
by random permutations of the group labels.

abs_t_null <- with(
filter(PlantGrowth, group %in% c("ctrl", "trt2")),
replicate(1����,
abs(t.test(weight ~ sample(group))$statistic)))

ggplot(data_frame(‘|t|‘ = abs_t_null), aes(x = ‘|t|‘)) +
geom_histogram(binwidth = �.1, boundary = �) +
geom_vline(xintercept = abs(tt$statistic), col="red")

mean(abs(tt$statistic) <= abs_t_null)
## [1] �.�471

Question 6.5.4 Why did we use the absolute value function (abs) in the above code?
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Question 6.5.5 Plot the (parametric) t-distribution with the appropriate degrees of
freedom?
The t-test comes in multiple flavors, all of which can be chosen through parame-

ters of the t.test function. What we did above was a two-sided two-sample unpaired Di�erent flavors of t-test
test with equal variance. Two-sided refers to the fact that we were open to reject
the null hypothesis if the weight of the treated plants was either larger or smaller
than that of the untreated ones. Two-sample indicates that we compared the means
of two groups to each other; another option would be to compare the mean of one
group against a given, fixed number. Unpairedmeans that there was no direct 1:1
mapping between the measurements in the two groups. If, on the other hand, the
data had been measured on the same plants before and other treatment, then a paired
test would be more appropriate, as it looks at the change of weight within each plant,
rather than their absolute weights. Equal variance refers to the way the statistic (6.2)
is calculated. That expression is most appropriate if the variances within each group
are about the same. If they are much di�erent, an alternative form10 and associated 10 Welch’s t -test

asymptotic theory exist.
Now let’s try something peculiar: duplicate the data. The independence assumption

with(rbind(PlantGrowth, PlantGrowth),
t.test(weight[group =="ctrl"],

weight[group =="trt2"],

var.equal = TRUE))

##

## Two Sample t-test

##

## data: weight[group == "ctrl"] and weight[group == "trt2"]

## t = -3.1��7, df = 38, p-value = �.��3629

## alternative hypothesis: true difference in means is not equal to �

## 95 percent confidence interval:

## -�.8165284 -�.1714716

## sample estimates:

## mean of x mean of y

## 5.�32 5.526

Note how the estimates of the group means (and thus, of the di�erence) are
unchanged, but the p-value is now much smaller! We can conclude two things from
this:
• The power of the t-test depends on the sample size. Even if the underlying bio-
logical di�erences are the same, a dataset with more samples tends to give more
significant results11. 11 You can already see this from Equation 6.3.

• The assumption of independence between the measurements is really important.
Blatant duplication of the same data is an extreme form of dependence, but to
some extent the same thing happens if you mix up di�erent levels of replication.
For instance, suppose you had data from 8 plants, but measured the same thing
twice on each plant (technical replicates), then pretending that these are now 16
independent measurements to a downstream analysis, such as the t-test, is wrong.
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6.6 P-value Hacking

Let’s go back to the coin tossing example. We could not reject the null hypothesis
(that the coin is fair) at a level of 5% – even though we “knew” that it is unfair. After
all, probHead was 0.6 on page 32. Let’s suppose we now start looking at di�erent
test statistics. Perhaps the number of consecutive series of 3 or more heads. Or
the number of heads in the first 50 coin flips. And so on. At some point we will
find a test that happens to result in a small p-value, even if just by chance (after
all, the probability for the p-value to be less than 5% under the null is 0.05, not an
infinitesimally small number). We just did what is called p-value hacking12 13. You 12 http://fivethirtyeight.com/

features/science-isnt-broken

13 Megan L Head, Luke Holman, Rob Lanfear,
Andrew T Kahn, and Michael D Jennions. The
extent and consequences of p-hacking in science.
PLoS Biol, 13(3):e1002106, 2015

see what the problem is: in our zeal to prove our point we tortured the data until
some statistic did what we wanted. A related tactic is hypothesis switching or
HARKing – hypothesizing after the results are known: we have a dataset, maybe we
have invested a lot of time and money into assembling it, so we need results. We come
up with lots of di�erent null hypotheses, test them, and iterate, until we can report
something interesting. Avoid fallacy. Keep in mind that our

statistical test is never attempting to
prove our null hypothesis is true - we
are simply saying whether or not there
is evidence for it to be false. If a high
p-value were indicative of the truth of
the null hypothesis, we could formulate
a completely crazy null hypothesis,
do an utterly irrelevant experiment,
collect a small amount of inconclusive
data, find a p-value that would just
be a random number between 0 and
1 (and so with some high probability
above our threshold � ) and, whoosh,
our hypothesis would be demonstrated!

All these tactics are not according to the rule book, as described in Section 6.3,
with a linear and non-iterative sequence of choosing the hypothesis and the test,
and then seeing the data. But, of course, they are often more close to reality. With
biological data, we tend to have so many di�erent choices for “normalising” the data,
transforming the data, add corrections for apparent batch e�ects, removing outliers,
. . . . The topic is complex and open-ended. Wasserstein and Lazar (2016) give a very
readable short summary of the problems with how p-values are used in science, and
of some of the misconceptions. They also highlight how p-values can be fruitfully
used. The essential message is: be completely transparent about your data, what
analyses were tried, and how they were done. Provide the analysis code. Only with
such contextual information can a p-value be useful.

6.7 Multiple Testing

Question 6.7.1 Look up xkcd comic 882. Why didn’t the newspaper report the results for the
other colors?
The same quandary occurs with high-throughput data in biology. And with force!

You will be dealing not only with 20 colors of jellybeans, but, say, with 20,000 genes
that were tested for di�erential expression between two conditions, or with 3 billion
positions in the genome where a DNA mutation might have happened. So how do we
deal with this? Let’s look again at our table relating statistical test results with reality
(Table 6.2), this time framing everything in terms of many null hypotheses.
• m: total number of hypotheses
• m0: number of null hypotheses
• V : number of false positives (a measure of type I error)
• T : number of false negatives (a measure of type II error)
• S ,U : number of true positives and true negatives
• R: number of rejections

http://fivethirtyeight.com/features/science-isnt-broken
http://fivethirtyeight.com/features/science-isnt-broken
http://xkcd.com/882
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Test vs Reality Null Hypothesis is true . . . is false Total

Rejected V S R

Not rejected U T m � R

Total m0 m �m0 m

Table 6.4: Types of error in multiple testing. The
letters designate the number of times each type
of error occurs.

6.8 The Family Wise Error Rate

The family wise error rate (FWER) is the probability thatV > 0, i. e., that we make
one or more false positive errors. We can compute it as the complement of making no
false positive errors at all14. 14 Assuming independence.

1 � P(no rejection of any ofm0 nulls) = 1 � (1 � �)m0 ! 1 asm ! 1 (6.4)

For any fixed � , this probability is appreciable as soon asm is in the order of 1/� , and
tends towards 1 asm becomes larger. This relationship can have big consequences
for experiments like DNA matching, where a large database of potential matches
is searched. For example, if there is a one in a million chance that the DNA profiles
of two people match by random error, and your DNA is tested against a database of
800000 profiles, then the probability of a random hit with the database (i. e., without
you being in it) is:

1 - (1 - 1/1e6)^8e5

## [1] �.55�6712

That’s pretty high. And once the database contains a few million profiles, a false hit
is virtually unavoidable.
Question 6.8.1 Prove that the probability (6.4) does indeed become very close to 1 whenm
is large.

6.8.1 Bonferroni correction

How are we to choose the per-hypothesis � if we want FWER control? The above
computations give us an intuition that the product of � withm gives us a ballpark
estimate, and this guess is in fact true. The Bonferroni correction is simply that if
we want FWER control at level �FWER, we should choose the per hypothesis threshold
� = �FWER/m. Let’s check this out on an example.
m <- 1����

ggplot(data_frame(
alpha = seq(�, 7e-6, length.out = 1��),
p = 1 - (1 - alpha)^m),

aes(x = alpha, y = p)) + geom_line() +
xlab(expression(alpha)) +
ylab("Prob( no false rejection )") +
geom_hline(yintercept = �.�5, col="red")

In Figure 6.9, the black line intersects the red line (which corresponds to a value of
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0.05) at � = 5.13 ⇥ 10�6, which is just a little bit more than the value of 0.05/m implied
by the Bonferroni correction.
Question 6.8.2 Why are the two values not exactly the same?
A potential drawback of this method, however, is that whenm is large, the rejec-

tion threshold is very small. This means that the individual tests need to be very
powerful if we want to have any chance to detect something. Often this is not possible,
or would not be an e�ective use of our time and money. We’ll see that there are more
nuanced methods of controlling our type I error.
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Figure 6.9: Bonferroni correction. The plot shows
the graph of (6.4) form = 104 as a function of � .

6.9 The False Discovery Rate

Let’s look at some real data. We load up the RNA-Seq dataset airway, which contains
gene expression measurements (gene-level counts) of four primary human airway
smooth muscle cell lines with and without treatment with dexamethasone, a syn-
thetic glucocorticoid. We’ll use the DESeq2method that we’ll discuss in more detail in
Chapter ??. For now it su�ces to say that it performs a test for di�erential expression
for each gene. Conceptually, the tested null hypothesis is very similar to that of the
t-test, although the test statistic and the null distribution are slightly more involved
since we are dealing with count data.

library("DESeq2")
library("airway")
data("airway")
aw <- DESeqDataSet(se = airway, design = ~ cell + dex)
aw <- aw[ rowMeans(counts(aw)) > 1, ]
dim(aw)
## [1] 22724 8

counts(aw)[1:2, 1:3]
## SRR1�395�8 SRR1�395�9 SRR1�39512

## ENSG����������3 679 448 873

## ENSG��������419 467 515 621

colData(aw)[, 2:4]
## DataFrame with 8 rows and 3 columns

## cell dex albut

## <factor> <factor> <factor>

## SRR1�395�8 N61311 untrt untrt

## SRR1�395�9 N61311 trt untrt

## SRR1�39512 N�52611 untrt untrt

## SRR1�39513 N�52611 trt untrt

## SRR1�39516 N�8�611 untrt untrt

## SRR1�39517 N�8�611 trt untrt

## SRR1�3952� N�61�11 untrt untrt

## SRR1�39521 N�61�11 trt untrt

awfit <- DESeq(aw)
awde <- as.data.frame(results(awfit))

Question 6.9.1 Why did we (in the 5th line of the above code chunk) remove genes that
have a very small number of counts on average across all samples?
Question 6.9.2 Have a look at the content of awde.
Question 6.9.3 (Optional) Consult the DESeq2 vignette and/or Chapter ?? for more infor-

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html


�������� ������� 43

mation on what the above code chunk does.

6.9.1 The p-value histogram

Let’s plot the histogram of p-values.

ggplot(awde, aes(x = pvalue)) +
geom_histogram(binwidth = �.�25, boundary = �)
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Figure 6.10: p-value histogram of for the airway
data.

The histogram (Figure 6.10) is an important sanity check for any analysis that
involves multiple tests. We expected it to be composed of two components:
• A uniform background, which corresponds to the null hypotheses. Remember that
under the null, the p-value is distributed uniformly in [0, 1].

• A peak at the left, from small p-values that were emitted by the alternatives.
The relative size of these two components depends on the fraction of true nulls and
true alternatives in the data. The shape of the peak towards the left depends on the
power of the tests: if the experiment was underpowered, we can still expect that the
p-values from the alternatives tend towards being small, but some of them will scatter
up into the middle of the range.
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Figure 6.11: Visual estimation of the FDR with the
p-value histogram.

Suppose we reject all tests with a p-value less than � . We could visually determine
an estimate of null hypotheses among these with a plot like in Figure 6.11

alpha <- binw <- �.�25

pi� <- 2 * mean(awde$pvalue > �.5)
ggplot(awde,
aes(x = pvalue)) + geom_histogram(binwidth = binw, boundary = �) +
geom_hline(yintercept = pi� * binw * nrow(awde), col = "blue") +
geom_vline(xintercept = alpha, col = "red")

We see that there are 4783 p-values in the first bin ([0,�]), among which we expect
around 439 to be nulls (as indicated by the blue line). Thus we can estimate the
fraction of false rejections as

pi� * alpha / mean(awde$pvalue <= alpha)
## [1] �.�9168932

Coming back to our terminology of Table 6.4, the false discovery rate (FDR) is
defined as

FDR = E
"

V

max(R, 1)

#
, (6.5)

The expression in the denominator makes sure that the maths are well-defined even
when R = 015. E[ ] stands for the expectation value. That means that the FDR is not a 15 . . . and thus by implicationV = 0.

quantity associated with a specific outcome ofV and R for one particular experiment.
Rather, given our choice of tests and associated rejection rules for them, it is the
average16 proportion of type I errors out of the rejections made, where the average is 16 Since the FDR is an expectation value, it

does not provide worst case control: in any
single experiment, the so-called false discovery
proportion (FDP), that isV /R without the E[ ],
could be much higher (or lower). Just as knowing
the mean of a population does not tell you the
values of the extremes.

taken (at least conceptually) over many replicate instances of the experiment.

6.9.2 The Benjamini-Hochberg algorithm for controlling the FDR

There is a more elegant alternative to the “visual FDR” method of the last section. The
procedure, introduced by Y. Benjamini and Y. Hochberg17 has these steps: 17 Y. Benjamini and Y. Hochberg. Controlling the

false discovery rate: a practical and powerful
approach to multiple testing. Journal of the
Royal Statistical Society B, 57:289–300, 1995

• First, order the p-values in increasing order, p1 . . .pm
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• Then for some choice of � (our target FDR), find the largest value of k that satisfies:
pk  � k/m

• Finally reject the hypotheses 1 . . .k
We can see how this procedure works when applied to our RNA-seq p-values

through a simple graphical illustration:

phi <- �.1�

awde <- mutate(awde, rank = rank(pvalue))
m <- nrow(awde)

ggplot(filter(awde, rank <= 7���), aes(x = rank, y = pvalue)) +
geom_line() + geom_abline(slope = phi / m, col="red") 0.000
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Figure 6.12: Visualisation of the Benjamini-
Hochberg procedure. Shown is a zoom-in to the
7000 lowest p-values.

The method now simply finds the rightmost point where the black (our p-values)
and red lines (slope �/m) intersect. Then it rejects all tests to the left.
kmax <- with(arrange(awde, rank),

last(which(pvalue <= phi * rank / m)))
kmax

## [1] 4563

Question 6.9.4 Compare the value of kmax with the number of 4783 from above (Fig-
ure 6.11). Why are they di�erent?
Question 6.9.5 Look at the code associated with the option method="BH" of the
p.adjust function that comes with R. Compare it to what we did above.

6.10 The Local FDR

While the xkcd comic mentioned in Figure 6.1 ends with a rather sinister intepre-
tation of the multiple testing problem as a way to accumulate errors, Figure 6.13
highlights the multiple testing opportunity: when we do many tests, we can use the
data to increase our understanding beyond what’s possible with a single test.
Let’s get back to the histogram in Figure 6.11. Conceptually, we can think of it in

terms of the two-groups model 18: 18 Bradley Efron. Large-scale inference: empiri-
cal Bayes methods for estimation, testing, and
prediction, volume 1. Cambridge University Press,
2010

f (p) = �0 + (1 � �0)falt(p), (6.6)
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Figure 6.13: From http://xkcd.com/1132
– While the frequentist only has the currently
available data, the Bayesian can draw on mech-
anistic insight or on previous experience. As a
Bayesian, she would know enough about physics
to understand that our sun’s mass is too small to
become a nova. And if she does not know physics,
she might be an empirical Bayesian, and draw
her prior from countless previous days where the
sun did not go nova.
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Figure 6.14: Local false discovery rate and the
two-group model, with some choice of falt(p), and
�0 = 0.6. Top: densities, bottom: distribution
functions.

Here, f (p) is the density of the distribution (what the histogram would look
like with infinitely much data and infinitely small bins), �0 is a number between 0
and 1 that represents the size of the uniform component, and falt is the alternative
component. These functions are visualised in the upper panel of Figure 6.14: the
blue areas together correspond to the graph of falt(p), the grey areas to that of
fnull(p) = �0. If we now consider one particular cuto� p (say, p = 0.1 as in Figure 6.14),
then we can decompose the value of f at the cuto� (red line) into the contribution
from the nulls (light red, �0) and from the alternatives (darker red, (1 � �0)falt(p)). So
we have the local false disovery rate

fdr(p) = �0
f (p) , (6.7)

and this quantity, which by definition is between 0 and 1, tells us the probability that a
hypothesis which we rejected at some cuto� p would be a false positive. Note how the
fdr in Figure 6.14 is a monotonically decreasing function of p, and this goes with our
intuition that the fdr should be lowest for the smallest p and then gradually get larger,
until it reaches 1 at the very right end. We can make a similar decomposition not only
for the red line, but also for the area under the curve. This is

F (p) =
Z p

0
f (t)dt , (6.8)

http://xkcd.com/1132
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and the ratio of the dark grey area (that is, �0 times p) to that is the tail area false
disovery rate (Fdr19). 19 The convention is to use the lower case abbrevi-

ation fdr for the local, and the abbreviation Fdr
for the tail-area false discovery rate in the context
of the two-groups model (6.6). The abbreviation
FDR is used for the original definition (6.5), which
is a bit more general.

Fdr(p) = �0 p

F (p) , (6.9)

We’ll use the data version of F for diagnostics in Figure 6.18.
The packages qvalue and fdrtool o�er facilities to fit these models to data.

library("fdrtool")
ft <- fdrtool(awde$pvalue, statistic = "pvalue")

In fdrtool, what we called �0 above is called eta�:

ft$param[,"eta�"]

## eta�

## �.76�5948

Question 6.10.1 What do the plots show that are produced by the above call to fdrtool?
Question 6.10.2 Explore the other elements of the list ft.
Question 6.10.3 What does the empirical in empirical Bayes methods stand for?

6.10.1 Local versus total

The FDR (or the Fdr) is a set property - it is a single number that applies to a whole
set of rejections made in the course of a multiple testing analysis. In contrast, the fdr
is a local property - it applies to individual additional hypothesis. Recall Figure 6.14,
where the fdr was computed for each point along the x-axis of the density plot,
whereas the Fdr depends on the areas to the left of the red line.
Question 6.10.4 Check out the concepts of total cost andmarginal cost in economics. Can
you seen an analogy with Fdr and fdr?

6.11 Independent Filtering and Hypothesis Weighting

The Benjamini-Hochberg method and the two-groups model, as we have seen them so
far, implicitly assume exchangeability of the hypotheses: all we use are the p-values.
Beyond these, we do not take into account any additional information. This is not
always optimal.
Let’s look at an example. Intuitively, the signal-to-noise ratio for genes with larger

numbers of reads mapped to them should be better than for genes with few reads, and
that should a�ect the power of our tests. We look at the mean of normalized counts
across samples. In the DESeq2 software this quantity is called the baseMean.
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Figure 6.15: Histogram of baseMean. We see that
it covers a large dynamic range, from close to 0 to
around 3.3 ⇥ 105.

awde$baseMean[1]

## [1] 7�8.6�22

cts <- counts(awfit, normalized = TRUE)[1, ]
cts

## SRR1�395�8 SRR1�395�9 SRR1�39512 SRR1�39513 SRR1�39516 SRR1�39517

## 663.3142 499.9�7� 74�.1528 6�8.9�63 966.3137 748.3722

## SRR1�3952� SRR1�39521

## 836.2487 6�5.6�24

mean(cts)
## [1] 7�8.6�22

http://bioconductor.org/packages/release/bioc/html/qvalue.html
http://cran.fhcrc.org/web/packages/fdrtool/index.html
http://cran.fhcrc.org/web/packages/fdrtool/index.html
http://bioconductor.org/packages/release/bioc/html/DESeq2.html
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Figure 6.16: Scatterplot of the rank of baseMean
versus the negative logarithm of the p-value. For
small values of baseMean, no small p-values
occur. Only for genes whose read counts across
all samples have a certain size, the test for
di�erential expression has power to come out
with a small p-value.

Next we produce its histogram across genes, and a scatterplot between it and the
p-values.

ggplot(awde, aes(x = asinh(baseMean))) +
geom_histogram(bins = 6�)

ggplot(awde, aes(x = rank(baseMean), y = -log1ı(pvalue))) +
geom_hex(bins = 6�) +
theme(legend.position = "none")

Question 6.11.1 Why did we use the asinh transformation for the histogram? How does it
look like with no transformation, the logarithm, the shifted logarithm, i. e., log(x + const.)?
Question 6.11.2 In the scatterplot, why did we use� log10 for the p-values? Why the rank
transformation for the baseMean?
For convenience, we discretize baseMean into a factor variable group, which corre-
sponds to six equal-sized groups.

awde <- mutate(awde, stratum = cut(baseMean,
breaks = quantile(baseMean, probs =

seq(�, 1, length.out = 7)),
include.lowest = TRUE))

In Figures 6.17 and 6.18 we see the histograms of p-values and the ECDFs stratified
by stratum.

ggplot(awde, aes(x = pvalue)) +
geom_histogram(binwidth = �.�25, boundary = �) +
facet_wrap( ~ stratum, nrow = 4)

ggplot(awde, aes(x = pvalue, col = stratum)) +
stat_ecdf(geom = "step")
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Figure 6.17: p-value histograms of the airway
data, stratified into 6equally sized groups defined
by increasing value of baseMean.

If we were to fit the two-group model to these strata separately, we would get quite
di�erent parameters (i. e., �0, falt). For the most lowly expressed genes (those in the
first baseMean-bin), the power of the DESeq2-test is low, and the p-values essentially
all come from the null component. As we go higher in average expression, the height
of the small-p-values peak in the histograms increases, reflecting the increasing
power of the test.
Can we use that for a better multiple testing correction? It turns out that this is

possible. We can use either independent filtering 20 or independent hypothesis 20 Richard Bourgon, Robert Gentleman, and
Wolfgang Huber. Independent filtering increases
detection power for high-throughput experi-
ments. PNAS, 107(21):9546–9551, 2010. URL
http://www.pnas.org/content/1�7/21/

9546.long

weighting (IHW) 21.

21 Nikolaos Ignatiadis, Bernd Klaus, Judith Zaugg,
and Wolfgang Huber. Data-driven hypothesis
weighting increases detection power in genome-
scale multiple testing. Nature Methods, 2016
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Figure 6.18: Same data as in Figure 6.17, shown
with ECDFs.

library("IHW")
ihw_res <- ihw(awde$pvalue, awde$baseMean, alpha = �.1)
rejections(ihw_res)
## [1] 4915

Let’s compare this to what we get from the ordinary (unweighted) Benjamini-
Hochberg method:

padj_BH <- p.adjust(awde$pvalue, method = "BH")
sum(padj_BH < �.1)
## [1] 4563

With hypothesis weighting, we get more rejections. For these data, the di�erence

http://bioconductor.org/packages/release/bioc/html/DESeq2.html
http://www.pnas.org/content/107/21/9546.long
http://www.pnas.org/content/107/21/9546.long
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is notable though not spectacular, this is because their signal-to-noise is already quite
high. In other situations (e. g., when there are fewer replicates or they are more noisy,
or when the e�ect of the treatment is less drastic), the di�erence from using IHW can
be more pronounced.
We can have a look at the weights determined by the ihw function.

plot(ihw_res) ● ● ●

●

●

●

●

● ● ●

●

● ●
●

●

● ● ●

● ●

●

●

● ● ● ● ●
● ●

●

● ● ●

● ●

●
●

● ● ● ●
● ●

● ●

● ● ●

●

●

●

●

● ●

● ● ● ● ●

●

● ● ●

● ●

● ●

●
● ● ● ● ●

●
●

0.0

0.5

1.0

1.5

5 10 15
stratum

we
ig
ht

fold
●

●

●

●

●

1

2

3

4

5

Figure 6.19: Hypothesis weights determined by
the ihw function. Here the function’s default
settings chose 15 strata, while in our manual
exploration above (Figures 6.17, 6.18) we had used
6; in practice, this is a minor detail.

Intuitively, what happens here is that IHW chooses to put more weight on the
hypothesis strata with higher baseMean, and low weight on those with very low
counts. The Benjamini-Hochberg method has a certain type-I error budget, and rather
than spreading it equally among all hypotheses, here we take it away from those
strata that have little change of small fdr anyway, and "invest" it in strata where many
hypotheses can be rejected at small fdr.
Question 6.11.3 Why does Figure 6.19 show 5 curves, rather than only one?
Such possibilities for stratification by a covariate (in our case: baseMean) exist in

many multiple testing situations. Informally, we need the covariate to be
• statistically independent from our p-values under the null, but
• informative of the prior probability �0 and/or the power of the test (the shape of
the alternative density, falt) in the two-groups model.

These requirements can be assessed through diagnostic plots as in Figures 6.15–6.18.

6.12 Summary of this Chapter

To summarize what we hope you’ve learned from this chapter:
• Understand the principal steps of a hypothesis test.
• Know the di�erent types of errors we are about to commit when doing hypothesis
testing.

• Understand the challenges and opportunities of doing thousands or millions of
tests.

• Know your di�erent between the family wise error rate and the false discovery
rate.

• Be familiar with the false discovery rate, and understand the di�erence between its
local and total (tail-area) definitions.

• Understand that often not all hypotheses are exchangeable, and that taking into
account informative covariates can improve your analyses.

• Be familiar with diagnostic plots, and know to always look at the p-value histogram
when encountering a multiple testing analysis.

6.13 Exercises

Exercise 6.1 What is a data type or an analysis method from your scientific field of ex-
pertise that relies on multiple testing? Do you focus on FWER or FDR? Are the hypotheses all
exchangeable, or are there any informative covariates?
Exercise 6.2 Why do statisticians often focus so much on the null hypothesis of a test,
compared to the alternative hypothesis?
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Exercise 6.3 How can we ever prove that the null hypothesis is true? Or that the alternative
is true?
Exercise 6.4 Make a less extreme example of correlated test statistics than the data du-
plication at the end of Section 6.5. Simulate data with true null hypotheses only, so that the
data morph from being completely independent to totally correlated as a function of some
continuous-valued control parameter. Check type-I error control (e. g., with the p-value his-
togram) as a function of this control parameter.
Exercise 6.5 Find an example in the published literature that looks like p-value hacking,
outcome switching, HARKing played a role.
Exercise 6.6 What other type-I and type-II error concepts are there for multiple testing?
Exercise 6.7 The FDR is an expectation value, i. e., aims to control average behavior of a
procedure. Are there methods for worst case control?

6.14 Further Reading

• A comprehensive text book treatment of multiple testing is given by 22. 22 Bradley Efron. Large-scale inference: empiri-
cal Bayes methods for estimation, testing, and
prediction, volume 1. Cambridge University Press,
2010

• Outcome switching in clinical trials: http://compare-trials.org
• For hypothesis weighting, the IHW vignette, the IHW paper 23 and the references

23 Nikolaos Ignatiadis, Bernd Klaus, Judith Zaugg,
and Wolfgang Huber. Data-driven hypothesis
weighting increases detection power in genome-
scale multiple testing. Nature Methods, 2016

therein.

http://compare-trials.org
http://bioconductor.org/packages/release/bioc/html/IHW.html
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