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Outline for Introduction to
Linear Models

Based on Love and Irizarry, Data Analysis for the Life Sciences,
Chapter 5

Multiple linear regression

Continuous and categorical predictors

Interactions

Model formulae

Design matrix

Analysis of Variance

https://leanpub.com/dataanalysisforthelifesciences
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Introduction to Linear Models
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Example: friction of spider legs
Wolff & Gorb, Radial arrangement of Janus-like setae permits
friction control in spiders, Sci. Rep. 2013.

(A) Barplot showing total claw tuft area of the corresponding
legs.

(B) Boxplot presenting friction coefficient data illustrating
median, interquartile range and extreme values.

http://www.nature.com/articles/srep01101
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Example: friction of spider legs

Are the pulling and pushing friction coefficients different?

Are the friction coefficients different for the different leg pairs?

Does the difference between pulling and pushing friction
coefficients vary by leg pair?
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Example: friction of spider legs

table(spider$leg,spider$type)

##      
##      pull push 
##   L1   34   34 
##   L2   15   15 
##   L3   52   52 
##   L4   40   40

summary(spider)

##  leg        type        friction      
##  L1: 68   pull:141   Min.   :0.1700   
##  L2: 30   push:141   1st Qu.:0.3900   
##  L3:104              Median :0.7600   
##  L4: 80              Mean   :0.8217   
##                      3rd Qu.:1.2400   
##                      Max.   :1.8400
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What are linear models?
Linear models model a response variable  as a linear
combination of predictors, plus randomly distributed noise.

Which of the following are examples of linear models?

1. 

2. 

3. 

Where: 

Assumption: 

Yi

= + +yi β0 β1xi εi

= + + +yi β0 β1xi β2x2
i εi

= + + × +yi β0 β1xi 2β2xi εi

i = 1,… , N

N(0, )εi ∼
iid σ2

ϵ
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What are linear models?

The following are examples of linear models:

1.  (simple linear regression)

2.  (quadratic regression)

= + +yi β0 β1xi εi

= + + +yi β0 β1xi β2x2
i εi
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Multiple linear regression model
Linear models can have any number of predictors

Systematic part of model:

 is the expected value of  given 

 is the outcome, response, or dependent variable

 is the vector of predictors / independent variables

 are the individual predictors or independent variables

 are the regression coefficients

E[y|x] = + + +. . . +β0 β1x1 β2x2 βpxp

E[y|x] y x

y

x

xp

βp
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Multiple linear regression model

Random part of model:

Assumptions of linear models: 

Normal distribution

Mean zero at every value of predictors

Constant variance at every value of predictors

Values that are statistically independent

= E[ | ] +yi yi xi ϵi

N(0, )ϵi ∼
iid σ2

ϵ
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Continuous predictors
Coding: as-is, or may be scaled to unit variance (which results
in adjusted regression coefficients)

Interpretation for linear regression: An increase of one
unit of the predictor results in this much difference in the
continuous outcome variable
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Binary predictors (2 levels)
Coding: indicator or dummy variable (0-1 coding)

Interpretation for linear regression: the increase or
decrease in average outcome levels in the group coded “1”,
compared to the reference category (“0”)

e.g. 

where x={ 1 if push friction, 0 if pull friction }

E(y|x) = + xβ0 β1
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Multilevel categorical predictors
(ordinal or nominal)

Coding:  dummy variables for -level categorical
variable

Comparisons with respect to a reference category, e.g. L1:

L2={1 if  leg pair, 0 otherwise},

L3={1 if  leg pair, 0 otherwise},

L4={1 if  leg pair, 0 otherwise}.

R re-codes factors to dummy variables automatically.

Note that factors can be ordered or unordered

K − 1 K

2nd

3nd

4th
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Model formulae in R
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Model formulae in R

Model formulae tutorial

regression functions in R such as aov(), lm(), glm(), and
coxph() use a “model formula” interface.

The formula determines the model that will be built (and
tested) by the R procedure. The basic format is:

> response variable ~ explanatory variables

The tilde means “is modeled by” or “is modeled as a function
of.”

http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
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Regression with a single
predictor

Model formula for simple linear regression:

> y ~ x

where “x” is the explanatory (independent) variable

“y” is the response (dependent) variable.
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Return to the spider legs

Friction coefficient for leg type of first leg pair:

spider.sub <- spider[spider$leg=="L1", ] 
fit <- lm(friction ~ type, data=spider.sub) 
summary(fit)

##  
## Call: 
## lm(formula = friction ~ type, data = spider.sub) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -0.33147 -0.10735 -0.04941 -0.00147  0.76853  
##  
## Coefficients: 
##             Estimate Std. Error t value Pr(>|t|)     
## (Intercept)  0.92147    0.03827  24.078  < 2e-16 *** 
## typepush    -0.51412    0.05412  -9.499  5.7e-14 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 0.2232 on 66 degrees of freedom 
## Multiple R-squared:  0.5776, Adjusted R-squared:  0.5711  
## F-statistic: 90.23 on 1 and 66 DF,  p-value: 5.698e-14
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Regression on spider leg type

Regression coefficients for friction ~ type for first set of
spider legs:

fit.table <- xtable::xtable(fit, label=NULL) 
print(fit.table, type="html")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9215 0.0383 24.08 0.0000

typepush -0.5141 0.0541 -9.50 0.0000

How to interpret this table?

Coefficients for (Intercept) and typepush

Coefficients are t-distributed when assumptions are correct

Standard Error is the sampling variance of the estimates
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Interpretation of coefficients

Diagram of the estimated coefficients in the linear model. The
green arrow indicates the Intercept term, which goes from zero
to the mean of the reference group (here the ‘pull’ samples). The
orange arrow indicates the difference between the push group
and the pull group, which is negative in this example. The circles
show the individual samples, jittered horizontally to avoid
overplotting.
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Regression on spider leg position

Remember there are positions 1-4

fit <- lm(friction ~ leg, data=spider)

fit.table <- xtable::xtable(fit, label=NULL) 
print(fit.table, type="html")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.6644 0.0538 12.34 0.0000

legL2 0.1719 0.0973 1.77 0.0784

legL3 0.1605 0.0693 2.32 0.0212

legL4 0.2813 0.0732 3.84 0.0002

Interpretation of the dummy variables legL2, legL3, legL4 ?
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Regression with multiple
predictors

Additional explanatory variables can be added as follows:

> y ~ x + z

Note that “+” does not have its usual meaning, which would be
achieved by:

> y ~ I(x + z)
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Regression on spider leg type and
position

Remember there are positions 1-4

fit <- lm(friction ~ type + leg, data=spider)

fit.table <- xtable::xtable(fit, label=NULL) 
print(fit.table, type="html")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0539 0.0282 37.43 0.0000

typepush -0.7790 0.0248 -31.38 0.0000

legL2 0.1719 0.0457 3.76 0.0002

legL3 0.1605 0.0325 4.94 0.0000

legL4 0.2813 0.0344 8.18 0.0000

this model still doesn’t represent how the friction differences
between different leg positions are modified by whether it is
pulling or pushing
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Interaction (effect modification)

Interaction between coffee and time of day on performance

Image credit: http://personal.stevens.edu/~ysakamot/

http://personal.stevens.edu/~ysakamot/
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Interaction (effect modification)

Interaction is modeled as the product of two covariates:

E[y|x] = + + + ∗β0 β1x1 β2x2 β12x1 x2
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Summary: model formulae

symbol example meaning

+ + x include this variable

- - x delete this variable

: x : z include the
interaction

* x * z
include these
variables and their
interactions

^
(u + v +
w)^3

include these
variables and all
interactions up to
three way

1 -1
intercept: delete the
intercept
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Summary: types of standard
linear models

lm( y ~ u + v)

u and v factors: ANOVA 
u and v numeric: multiple regression 
one factor, one numeric: ANCOVA

R does a lot for you based on your variable classes

be sure you know the classes of your variables

be sure all rows of your regression output make sense
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The Design Matrix
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The Design Matrix

Recall the multiple linear regression model:

 is the value of predictor  for observation 

= + + +. . . + +yi β0 β1x1i β2x2i βpxpi ϵi

xji xj i
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The Design Matrix

Matrix notation for the multiple linear regression model:

or simply:

The design matrix is 

which the computer will take as a given when solving for  by
minimizing the sum of squares of residuals .

= ( ) +

⎛

⎝

⎜⎜⎜⎜

y1

y2

⋮
yN

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

1
1

⋮
1

x1

x2

xN

⎞

⎠

⎟⎟⎟⎟
β0

β1

⎛

⎝

⎜⎜⎜⎜

ε1

ε2

⋮
εN

⎞

⎠

⎟⎟⎟⎟

Y = Xβ + ε

X
β

ε
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Choice of design matrix
there are multiple possible and reasonable design matrices for a
given study design

the model formula encodes a default model matrix, e.g.:

group <- factor( c(1, 1, 2, 2) ) 
model.matrix(~ group)

##   (Intercept) group2 
## 1           1      0 
## 2           1      0 
## 3           1      1 
## 4           1      1 
## attr(,"assign") 
## [1] 0 1 
## attr(,"contrasts") 
## attr(,"contrasts")$group 
## [1] "contr.treatment"
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Choice of design matrix

What if we forgot to code group as a factor?

group <- c(1, 1, 2, 2) 
model.matrix(~ group)

##   (Intercept) group 
## 1           1     1 
## 2           1     1 
## 3           1     2 
## 4           1     2 
## attr(,"assign") 
## [1] 0 1
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More groups, still one variable

group <- factor(c(1,1,2,2,3,3)) 
model.matrix(~ group)

##   (Intercept) group2 group3 
## 1           1      0      0 
## 2           1      0      0 
## 3           1      1      0 
## 4           1      1      0 
## 5           1      0      1 
## 6           1      0      1 
## attr(,"assign") 
## [1] 0 1 1 
## attr(,"contrasts") 
## attr(,"contrasts")$group 
## [1] "contr.treatment"
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Changing the baseline group

group <- factor(c(1,1,2,2,3,3)) 
group <- relevel(x=group, ref=3) 
model.matrix(~ group)

##   (Intercept) group1 group2 
## 1           1      1      0 
## 2           1      1      0 
## 3           1      0      1 
## 4           1      0      1 
## 5           1      0      0 
## 6           1      0      0 
## attr(,"assign") 
## [1] 0 1 1 
## attr(,"contrasts") 
## attr(,"contrasts")$group 
## [1] "contr.treatment"
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More than one variable

diet <- factor(c(1,1,1,1,2,2,2,2)) 
sex <- factor(c("f","f","m","m","f","f","m","m")) 
model.matrix(~ diet + sex)

##   (Intercept) diet2 sexm 
## 1           1     0    0 
## 2           1     0    0 
## 3           1     0    1 
## 4           1     0    1 
## 5           1     1    0 
## 6           1     1    0 
## 7           1     1    1 
## 8           1     1    1 
## attr(,"assign") 
## [1] 0 1 2 
## attr(,"contrasts") 
## attr(,"contrasts")$diet 
## [1] "contr.treatment" 
##  
## attr(,"contrasts")$sex 
## [1] "contr.treatment"
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With an interaction term

model.matrix(~ diet + sex + diet:sex)

##   (Intercept) diet2 sexm diet2:sexm 
## 1           1     0    0          0 
## 2           1     0    0          0 
## 3           1     0    1          0 
## 4           1     0    1          0 
## 5           1     1    0          0 
## 6           1     1    0          0 
## 7           1     1    1          1 
## 8           1     1    1          1 
## attr(,"assign") 
## [1] 0 1 2 3 
## attr(,"contrasts") 
## attr(,"contrasts")$diet 
## [1] "contr.treatment" 
##  
## attr(,"contrasts")$sex 
## [1] "contr.treatment"
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Design matrix to contrast what
we want

Spider leg friction example:

The question of whether push vs. pull difference is different in L2
compared to L1 is answered by the term typepush:legL2 in a
model with interaction terms:

fitX <- lm(friction ~ type * leg, data=spider)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9215 0.0327 28.21 0.0000

typepush -0.5141 0.0462 -11.13 0.0000

legL2 0.2239 0.0590 3.79 0.0002

legL3 0.3524 0.0420 8.39 0.0000

legL4 0.4793 0.0444 10.79 0.0000

typepush:legL2 -0.1039 0.0835 -1.24 0.2144

typepush:legL3 -0.3838 0.0594 -6.46 0.0000

typepush:legL4 -0.3959 0.0628 -6.30 0.0000

**What if we want to ask this question for L3 vs L2?
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Design matrix to contrast what
we want

What if we want to contrast…

typepush:legL3 - typepush:legL2

There are many ways to construct this design, one is with
library(multcomp):

names(coef(fitX))

## [1] "(Intercept)"    "typepush"       "legL2"          "legL3"          
## [5] "legL4"          "typepush:legL2" "typepush:legL3" "typepush:legL4"

C <- matrix(c(0,0,0,0,0,-1,1,0), 1)  
L3vsL2interaction <- multcomp::glht(fitX, linfct=C) 
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Design matrix to contrast what
we want

Is there a difference in pushing friction for L3 vs L2?

summary(L3vsL2interaction)

##  
##   Simultaneous Tests for General Linear Hypotheses 
##  
## Fit: lm(formula = friction ~ type * leg, data = spider) 
##  
## Linear Hypotheses: 
##        Estimate Std. Error t value Pr(>|t|)     
## 1 == 0 -0.27988    0.07893  -3.546  0.00046 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## (Adjusted p values reported -- single-step method)
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Summary: applications of model
matrices

Major differential expression packages recognize them:

LIMMA (VOOM for RNA-seq)

DESeq2 for all kinds of count data

EdgeR

Can fit coefficients directly to your contrast of interest

e.g.: what is the difference between push/pull friction for each spider-leg
pair?
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Analysis of Variance
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Why Analysis of Variance?
Analysis of Variance allows inference on the inclusion of a
categorical or continuous variable

not just on re-coded “dummy” variables (e.g. for each spider leg pair)
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Compare ANOVA table to
regression table

print(xtable::xtable(summary(fit)), type="html")

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0539 0.0282 37.43 0.0000

typepush -0.7790 0.0248 -31.38 0.0000

legL2 0.1719 0.0457 3.76 0.0002

legL3 0.1605 0.0325 4.94 0.0000

legL4 0.2813 0.0344 8.18 0.0000

print(xtable::xtable(anova(fit)), type="html")

Df Sum Sq Mean Sq F value Pr(>F)

type 1 42.78 42.78 984.73 0.0000

leg 3 2.92 0.97 22.41 0.0000

Residuals 277 12.03 0.04

F = =variability between groups
variability within groups

reduction in variance from adding variable
variance of residuals
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Analysis of Variance: F test
Compares between group variance to within group variance

The F distribution depends on both numerator (df1) and
denominator (df2) degrees of freedom

Rejection region is in the right tail only:

F = =variability between groups
variability within groups

reduction in variance from adding variable
variance of residuals
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Summary
Linear models are the basis for identifying differential
expression / differential abundance

continuous ; any kind of  variables

Assumptions:

1. normal, homoscedastic errors,

2. a linear relationship, and

3. independent observations.

Note that t and F tests are robust and conservative to violations
of 1 and 2

extremely so for 

Y X

n > 30
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Summary (cont’d)
Know the model formula interface, but

use model matrices to directly fit coefficients that you want to interpret

Generalized Linear Models extend these methods to:

binary  (logistic regression)

count  (log-linear regression with e.g. Poisson or Negative Binomial link
functions)

Y

Y
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Links
A built html version of this lecture is available.

The source R Markdown is also available from Github.

http://rpubs.com/lwaldron/CSAMA2016_IntroLinearModels
https://github.com/waldronlab/presentations/tree/master/Waldron_2016-07-11_CSAMA_linearmodels

