
Chapter 3

High Quality Graphics in R

�

���

���

���

����

� �� �� �� �� ��

����������������������������

�
��
�
��

�
��
�
�
�
�
��

��
�
��

��
�
���

��
��
��

�
�

Figure 3.1: An elementary law of visualization.

There are (at least) two types of data visualization. The first enables a scientist to

effectively explore data and make discoveries about the complex processes at work.

The other type of visualization provides informative, clear and visually attractive

illustrations of her results that she can show to others and eventually include in a

publication.

Both of these types of visualizations can be made with R. In fact, R offers multiple

graphics systems. This is because R is extensible, and because progress in R graphics

has proceeded largely not by replacing the old functions, but by adding packages.

Each of the different graphics systems has its advantages and limitations. In this

chapter we’ll use two of them. First, we have a cursory look at the base R plotting

functions1. Subsequently we will switch to ggplot2. 1 They live in the graphics package, which ships
with every basic R installation.

Figure 3.2: The ZUSE Plotter Z64 (presented in
1961). Source: https://en.wikipedia.org/

wiki/Plotter.

Base R graphics were historically first: simple, procedural, canvas-oriented. There

are specialized functions for different types of plots. These are easy to call – but

when you want to combine them to build up more complex plots, or exchange one for

another, this quickly gets messy to program, or even impossible. The user plots (the

word stems back to some of the first graphics devices – see Figure 3.2) directly onto

a (conceptual) canvas. She explicitly needs to deal with decisions such as how many

inches to allocate to margins, axes labels, titles, legends, subpanels; once something is

“plotted” it cannot be easily moved or erased.

There is a more high-level approach: in the grammar of graphics, graphics are

built up from modular logical pieces, so that we can easily try different visualization

types for our data in an intuitive and easily deciphered way, like we can switch in

and out parts of a sentence in human language. There is no concept of a canvas or a

plotter, rather, the user gives ggplot2 a high-level description of the plot she wants, in

the form of an R object, and the rendering engine takes a wholistic view on the scene

to lay out the graphics and render them on the output device.

We’ll explore faceting, for showing more than 2 variables at a time. Sometimes this

is also called lattice2 graphics, and it allows us to visualise data in up to four or five 2 The first major R package to implement this was
lattice; nowadays much of such functionality is
also provided through ggplot2.

dimensions.

68 ����

3.1 Goals for this chapter

• Learn how to rapidly and flexibly explore datasets by visualization.

• Create beautiful and intuitive plots for scientific presentations and publications.

• Review the basics of base R plotting.

• Understand the logic behind the grammar of graphics concept.

• Introduce ggplot2’s ggplot function.

• See how to plot 1D, 2D, 3-5D data, and understand faceting.

• Creating “along-genome” plots for molecular biology data (or along other se-

quences, e. g., peptides).

• Discuss our options of interactive graphics.

3.2 Base R plotting

� � � � � �� ��

��
�

��
�

��
�

��
�

��
�

����������

��
��
��
��
��
���

Figure 3.3: Plot of concentration vs. density for an
ELISA assay of DNase.

The most basic function is plot. In the code below, the output of which is shown in
Figure 3.3, it is used to plot data from an enzyme-linked immunosorbent assay (ELISA)
assay. The assay was used to quantify the activity of the enzyme deoxyribonuclease
(DNase), which degrades DNA. The data are assembled in the R object DNase, which
conveniently comes with base R. DNase is a dataframe whose columns are Run, the
assay run; conc, the protein concentration that was used; and density, the mea-
sured optical density.

head(DNase)

Run conc density

1 1 0.04882812 0.017

2 1 0.04882812 0.018

3 1 0.19531250 0.121

4 1 0.19531250 0.124

5 1 0.39062500 0.206

6 1 0.39062500 0.215

plot(DNase$conc, DNase$density)

� � � � � �� ��

��
�

��
�

��
�

��
�

��
�

���������������������������

��
���
���
��
��
���

Figure 3.4: Same data as in Figure 3.3 but with
better axis labels and a different plot symbol.

This basic plot can be customized, for example by changing the plot symbol and
axis labels using the parameters xlab, ylab and pch (plot character), as shown in
Figure 3.4. Information about the variables is stored in the object DNase, and we can
access it with the attr function.

plot(DNase$conc, DNase$density,

ylab = attr(DNase, "labels")$y,

xlab = paste(attr(DNase, "labels")$x, attr(DNase, "units")$x),

pch = 3,

col = "blue")

I Question 3.2.1. Annotating dataframe columns with “metadata” such as longer

descriptions, physical units, provenance information, etc., seems like a useful feature.

Is this way of storing such information, as in the DNase object, standardized or com-

mon across the R ecosystem? Are there other standardized or common ways for doing

this?

���� ������� �������� �� � 69

I Answer 3.2.1. Have a look at the DataFrame class in the Bioconductor package

S4Vectors. Among other things it is used to annotate the rows and columns of a Sum-

marizedExperiment3. 3 So the meatadata of the DataFrame that itself
serves as metadata to the matrix in a Summarized-
Experiment could be called metametadata. This
recursion can be repeated ad infinitum. Some
people dislike the “meta” prefix since it is more a
subjective comment on rather than an objective
property of a datum.

Besides scatterplots, we can also use built-in functions to create histograms and
boxplots (Figure 3.5).

hist(DNase$density, breaks=25, main = "")

boxplot(density ~ Run, data = DNase)

Boxplots are convenient for showing multiple distributions next to each other in

a compact space, and they are universally preferable to the barplots with error bars

sometimes still seen in biological papers. We will see more about plotting multiple

univariate distributions in Section 3.6.

�������������

��
��
��
��
�

��� ��� ��� ��� ���

�
��

��
�� �� � � � � � � � � �

��
�

��
�

��
�

��
�

��
�

Figure 3.5: Histogram of the density from the
ELISA assay, and boxplots of these values strat-
ified by the assay run. The boxes are ordered
along the axis in lexicographical order because
the runs were stored as text strings. We could
use R’s type conversion functions to achieve
numerical ordering.

The base R plotting functions are great for quick interactive exploration of data;

but we run soon into their limitations if we want to create more sophisticated dis-

plays. We are going to use a visualization framework called the grammar of graphics,

implemented in the package ggplot2, that enables step by step construction of high

quality graphics in a logical and elegant manner. First let us introduce and load an

example dataset.

3.3 An example dataset

Figure 3.6: Single-section immunofluorescence
image of the E3.5 mouse blastocyst stained for
Serpinh1, a marker of primitive endoderm (blue),
Gata6 (red) and Nanog (green).

To properly testdrive the ggplot2 functionality, we are going to need a dataset that is
big enough and has some complexity so that it can be sliced and viewed from many
different angles. We’ll use a gene expression microarray dataset that reports the
transcriptomes of around 100 individual cells from mouse embryos at different time
points in early development. The mammalian embryo starts out as a single cell, the
fertilized egg. Through synchronized waves of cell divisions, the egg multiplies into
a clump of cells that at first show no discernible differences between them. At some
point, though, cells choose different lineages. By further and further specification,
the different cell types and tissues arise that are needed for a full organism. The aim
of the experiment, explained by Ohnishi et al. (2014), was to investigate the gene
expression changes associated with the first symmetry breaking event in the embryo.
We’ll further explain the data as we go. More details can be found in the paper and
in the documentation of the Bioconductor data package Hiiragi2013. We first load the
package and the data:

library("Hiiragi2013")

data("x")

dim(exprs(x))

[1] 45101 101

You can print out a more detailed summary of the ExpressionSet object x by just typ-

ing x at the R prompt. The 101 columns of the data matrix (accessed above through

the exprs function) correspond to the samples (and each of these to a single cell), the

45101 rows correspond to the genes probed by the array, an Affymetrix mouse4302

70 ����

array. The data were normalized using the RMA method (Irizarry et al., 2003). The

raw data are also available in the package (in the data object a) and at EMBL-EBI’s

ArrayExpress database under the accession code E-MTAB-1681.

Let’s have a look at what information is available about the samples.4 4 The notation #CAB2D6 is a hexadecimal repre-
sentation of the RGB coordinates of a color; more
on this in Section 3.10.2.

head(pData(x), n = 2)

File.name Embryonic.day Total.number.of.cells lineage

1 E3.25 1_C32_IN E3.25 32

2 E3.25 2_C32_IN E3.25 32

genotype ScanDate sampleGroup sampleColour

1 E3.25 WT 2011-03-16 E3.25 #CAB2D6

2 E3.25 WT 2011-03-16 E3.25 #CAB2D6

The information provided is a mix of information about the cells (i.e., age, size and
genotype of the embryo from which they were obtained) and technical information
(scan date, raw data file name). By convention, time in the development of the mouse
embryo is measured in days, and reported as, for instance, E3.5. Moreover, in the
paper the authors divided the cells into 8 biological groups (sampleGroup), based on
age, genotype and lineage, and they defined a color scheme to represent these groups
(sampleColour5). Using the group_by and summarise functions from the package 5 This identifier in the dataset uses the British

spelling. Everywhere else in this chapter, we
use the US spelling (color). The ggplot2 package
generally accepts both spellings.

dplyr, we’ll define a little dataframe groups that contains summary information for
each group: the number of cells and the preferred color.

library("dplyr")

groups = group_by(pData(x), sampleGroup) %>%

summarise(n = n() , color = unique(sampleColour))

groups

A tibble: 8 x 3

sampleGroup n color

<chr> <int> <chr>

1 E3.25 36 #CAB2D6

2 E3.25 (FGF4-KO) 17 #FDBF6F

3 E3.5 (EPI) 11 #A6CEE3

4 E3.5 (FGF4-KO) 8 #FF7F00

5 E3.5 (PE) 11 #B2DF8A

6 E4.5 (EPI) 4 #1F78B4

7 E4.5 (FGF4-KO) 10 #E31A1C

8 E4.5 (PE) 4 #33A02C

The cells in the groups whose name contains FGF4-KO are from embryos in which

the FGF4 gene, an important regulator of cell differentiation, was knocked out. Start-

ing from E3.5, the wildtype cells (without the FGF4 knock-out) undergo the first sym-

metry breaking event and differentiate into different cell lineages, called pluripotent

epiblast (EPI) and primitive endoderm (PE).

3.4 ggplot2

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●
●

●
●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●●

●
●

●

●

●●

●●

●●

●●

●●

●

●

●●

●●

●
●

●
●
●●

●●

●●

●●

●
●

●
●

●●

●●

●●

●●

●●

●●

●●

●
●

●●

���

���

���

���

���

� � � ��
����

��
��
���

Figure 3.7: Our first ggplot2 figure, similar to the
base graphics Figure 3.3.

ggplot2 is a package by Hadley Wickham (Wickham, 2016) that implements the idea

���� ������� �������� �� � 71

of grammar of graphics – a concept created by Leland Wilkinson in his eponymous

book (Wilkinson, 2005). Comprehensive documentation for the package can be found

on its website. The online documentation includes example use cases for each of

the graphic types that are introduced in this chapter (and many more) and is an

invaluable resource when creating figures.

Let’s start by loading the package and redoing the simple plot of Figure 3.3.

library("ggplot2")

ggplot(DNase, aes(x = conc, y = density)) + geom_point()

We just wrote our first “sentence” using the grammar of graphics. Let us decon-

struct this sentence. First, we specified the dataframe that contains the data, DNase.

Then we told ggplot via the aes6 argument which variables we want on the x- and 6 This stands for aesthetic, a terminology that
will become clearer below.y-axes, respectively. Finally, we stated that we want the plot to use points, by adding

the result of calling the function geom_point.

Now let’s turn to the mouse single cell data and plot the number of samples for
each of the 8 groups using the ggplot function. The result is shown in Figure 3.8.

ggplot(data = groups, aes(x = sampleGroup, y = n)) +

geom_bar(stat = "identity")

�

��

��

��

����������������−�����������������������−��������������������������������−������������
�����������

�
Figure 3.8: A barplot, produced with the ggplot

function from the table of group sizes in the
mouse single cell data.

With geom_bar we now told ggplot that we want each data item (each row

of groups) to be represented by a bar. Bars are one geometric object (geom) that

ggplot knows about. We’ve already seen another geom in Figure 3.7: points. We’ll

encounter many other possible geometric objects later. We used the aes to indicate

that we want the groups shown along the x-axis and the sizes along they-axis. Finally,

we provided the argument stat = "identity" (in other words, do nothing) to the

geom_bar function, since otherwise it would try to compute a histogram of the data

(the default value of stat is "count"). stat is short for statistic, which is what we

call any function of data. Besides the identity and count statistic, there are others,

such as smoothing, averaging, binning, or other operations that reduce the data in

some way.

These concepts –data, geometrical objects, statistics– are some of the ingredients

of the grammar of graphics, just as nouns, verbs and adverbs are ingredients of an

English sentence.

I Question 3.4.1.

Flip the x- andy-aesthetics to produce a horizontal barplot.

The plot in Figure 3.8 is not bad, but there are several potential improvements.
We can use color for the bars to help us quickly see which bar corresponds to which
group. This is particularly useful if we use the same color scheme in several plots. To
this end, let’s define a named vector groupColor that contains our desired colors for
each possible value of sampleGroup.7 7 The information is completely equivalent to that

in the sampleGroup and color columns of the
dataframe groups, we’re just adapting to the fact
that ggplot2 expects this information in the form
of a named vector.

groupColor = setNames(groups$color, groups$sampleGroup)

Another thing that we need to fix is the readability of the bar labels. Right now

72 ����

they are running into each other — a common problem when you have descriptive
names.

ggplot(groups, aes(x = sampleGroup, y = n, fill = sampleGroup)) +

geom_bar(stat = "identity") +

scale_fill_manual(values = groupColor, name = "Groups") +

theme(axis.text.x = element_text(angle = 90, hjust = 1))
�

��

��

��

��
��
�

��
��
��
��
��

�−
��

�

��
��
���

��
�

��
��
���
��

�−
��

�

��
��
���

��

��
��
���

��
�

��
��
���
��

�−
��

�

��
��
���

��

�����������

�

������
�����
�����������−���
����������
����������−���
���������
����������
����������−���
���������

Figure 3.9: Similar to Figure 3.8, but with colored
bars and better bar labels.

This is now already a longer and more complex sentence. Let us dissect it. We

added an argument, fill to the aes function that states that we want the bars

to be colored (filled) based on sampleGroup (which in this case co-incidentally is

also the value of the x argument, but that need not be so). Furthermore we added

a call to the scale_fill_manual function, which takes as its input a color map

– i. e., the mapping from the possible values of a variable to the associated colors –

as a named vector. We also gave this color map a title (note that in more complex

plots, there can be several different color maps involved). Had we omitted the call to

scale_fill_manual, ggplot2 would have used its choice of default colors. We also

added a call to theme stating that we want the x-axis labels rotated by 90 degrees and

right-aligned (hjust; the default would be to center).

3.4.1 Data flow

ggplot2 expects your data in a dataframe8. If they are in a matrix, in separate vec- 8 This includes the base R data.frame as well as the
tibble (and synonymous data_frame) classes from
the tibble package in the tidyverse.

tors, or other types of objects, you will have to convert them. The packages dplyr

and broom, among others, offer facilities to this end, we’ll discuss this more in Sec-

tion 14.11, and you’ll see examples of such conversions sprinkled throughout the

book.

The result of a call to the ggplot is a ggplot object. Let’s recall a piece of code from
above:

gg = ggplot(DNase, aes(x = conc, y = density)) + geom_point()

We have now assigned the output of ggplot to the object gg, instead of sending it
directly to the console, where it was “printed” and produced Figure 3.7. The situation
is completely analogously to what you are used to from working with the R console:
when you enter an expression like 1+1 and hit “Enter”, the result is printed. When
the expression is an assignment, such as s = 1+1, the side effect takes place (the
name "s" is bound to an object in memory that represents the value of 1+1), but
nothing is printed. Similarly, when an expression is evaluated as part of a script called
with source, it is not printed. Thus, the above code also does not create any graphic
output, since no printmethod is invoked. To print the gg, type its name (in an
interactive session) or call print on it:
gg

print(gg)

���� ������� �������� �� � 73

3.4.2 Saving figures

ggplot2 has a built-in plot saving function called ggsave:

ggsave("DNAse-histogram-demo.pdf", plot = gg)

There are two major ways of storing plots: vector graphics and raster (pixel) graph-

ics. In vector graphics, the plot is stored as a series of geometrical primitives such

as points, lines, curves, shapes and typographic characters. The prefered format in

R for saving plots into a vector graphics format is PDF. In raster graphics, the plot is

stored in a dot matrix data structure. The main limitation of raster formats is their

limited resolution, which depends on the number of pixels available. In R, the most

commonly used device for raster graphics output is png. Generally, it’s preferable

to save your graphics in a vector graphics format, since it is always possible later to

convert a vector graphics file into a raster format of any desired resolution, while the

reverse is fundamentally limited by the resolution of the original file. And you don’t

want the figures in your talks or papers look poor because of pixelization artefacts!

3.5 The grammar of graphics

�

��

��� ��� ���� ����
�����������

��
��
��
��
��
�

Figure 3.10: A scatterplot with three layers that
show different statistics of the same data: points,
a smooth regression line, and a confidence band.

The components of ggplot2’s grammar of graphics are

1. one or more datasets,

2. one or more geometric objects that serve as the visual representations of the data,

– for instance, points, lines, rectangles, contours,

3. descriptions of how the variables in the data are mapped to visual properties (aes-

thetics) of the geometric objects, and an associated scale (e. g., linear, logarithmic,

rank),

4. one or more coordinate systems,

5. statistical summarization rules,

6. a facet specification, i. e. the use of multiple similar subplots to look at subsets of

the same data,

7. optional parameters that affect the layout and rendering, such text size, font and

alignment, legend positions, and the like.

In the examples above, Figures 3.8 and 3.9, the dataset was groupsize, the variables

were the numeric values as well as the names of groupsize, which we mapped to the

aestheticsy-axis and x-axis respectively, the scale was linear on they and rank-based

on the x-axis (the bars are ordered alphanumerically and each has the same width),

the geometric object was the rectangular bar.

Items 4.–7. in the above list are optional. If you don’t specify them, then the Carte-

sian is used as the coordinate system, the statistical summary is the trivial one (i. e.,

the identity), and no facets or subplots are made (we’ll see examples later on, in Sec-

tion 3.8). The first three items are mandatory, you always need to specify at least one

of them: they are the minimal components of a valid ggplot2 “sentence”.

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
● ●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

●
●

●
● ●

●●

●

●

●

�

��

��� ��� ���� ����
�����������

��
��
��
��
��
�

Figure 3.11: As Figure 3.10, but in addition with
points colored by the sample group (as in Fig-
ure 3.9). We can now see that the expression
values of the gene Timd2 (whose mRNA is tar-
geted by the probe 1418765_at) are consistently
high in the early time points, whereas its expres-
sion goes down in the EPI samples at days 3.5
and 4.5. In the FGF4-KO, this decrease is delayed
- at E3.5, its expression is still high. Conversely,
the gene Fn1 (1426642_at) is off in the early
timepoints and then goes up at days 3.5 and 4.5.
The PE samples (green) show a high degree of
cell-to-cell ariability

74 ����

In fact, ggplot2’s implementation of the grammar of graphics allows you to use the

same type of component multiple times, in what are called layers (Wickham, 2010).

For example, the code below uses three types of geometric objects in the same plot,

for the same data: points, a line and a confidence band.

dftx = as_tibble(t(exprs(x))) %>% cbind(pData(x))

dftx = data.frame(t(exprs(x)), pData(x))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(shape = 1) +

geom_smooth(method = "loess")

Here we had to assemble a copy of the expression data (exprs(x)) and the sam-

ple annotation data (pData(x)) all together into the dataframe dftx – since this

is the data format that ggplot2 functions most easily take as input (more on this in

Section 14.11).

We can further enhance the plot by using colors – since each of the points in
Figure 3.10 corresponds to one sample, it makes sense to use the sampleColour

information in the object x.

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point(aes(color = sampleColour), shape = 19) +

geom_smooth(method = "loess") +

scale_color_discrete(guide = FALSE)

I Question 3.5.1. In the code above we defined the color aesthetics (aes) only for

the geom_point layer, while we defined the x and y aesthetics for all layers. What

happens if we set the color aesthetics for all layers, i. e., move it into the argument

list of ggplot? What happens if we omit the call to scale_color_discrete?

I Question 3.5.2. Is it always meaningful to visualize scatterplot data together with

a regression line as in Figures 3.10 and 3.11?

As a small side remark, if we want to find out which genes are targeted by these
probe identifiers, and what they might do, we can call.9 9 Note that here were need to use the original

feature identifiers (e. g., “1426642_at”, without
the leading “X”). This is the notation used by the
microarray manufacturer, by the Bioconductor
annotation packages, and also inside the object
x. The leading “X” that we used above when
working with dftx was inserted during the
creation of dftx by the constructor fuction
data.frame, since its argument check.names

is set to TRUE by default. Alternatively, we could
have kept the original identifer notation by
setting check.names=FALSE, but then we
would need to work with the backticks, such as
aes(x = `1426642_at`, ...), to make
sure R understands the identifiers correctly.

library("mouse4302.db")

AnnotationDbi::select(mouse4302.db,

keys = c("1426642_at", "1418765_at"), keytype = "PROBEID",

columns = c("SYMBOL", "GENENAME"))

PROBEID SYMBOL

1 1426642_at Fn1

2 1418765_at Timd2

GENENAME

1 fibronectin 1

2 T cell immunoglobulin and mucin domain containing 2

Often when using ggplot you will only need to specify the data, aesthetics and a

geometric object. Most geometric objects implicitly call a suitable default statistical

summary of the data. For example, if you are using geom_smooth, ggplot2 by default

uses stat = "smooth" and then displays a line; if you use geom_histogram, the

���� ������� �������� �� � 75

data are binned, and the result is displayed in barplot format. Here’s an example:

�

���

����

����

����

� �� ��
��������

��
��
�

Figure 3.12: Histogram of probe intensities for
one particular sample, cell number 20, which was
from day E3.25.

dfx = as.data.frame(exprs(x))

ggplot(dfx, aes(x = ‘20 E3.25‘)) + geom_histogram(binwidth = 0.2)

I Question 3.5.3. What is the difference between the objects dfx and dftx? Why

did we need to create both of the?

Let’s come back to the barplot example from above.

pb = ggplot(groups, aes(x = sampleGroup, y = n))

This creates a plot object pb. If we try to display it, it creates an empty plot, be-
cause we haven’t specified what geometric object we want to use. All that we have in
our pb object so far are the data and the aesthetics (Fig. 3.13)

class(pb)

[1] "gg" "ggplot"

pb

��

��

��

����������������−�����������������������−��������������������������������−������������
�����������

�

Figure 3.13: pb: without a geometric object, the
plot remains empty.

Now we can literally add on the other components of our plot through using the +

operator (Fig. 3.14):

pb = pb + geom_bar(stat = "identity")

pb = pb + aes(fill = sampleGroup)

pb = pb + theme(axis.text.x = element_text(angle = 90, hjust = 1))

pb = pb + scale_fill_manual(values = groupColor, name = "Groups")

pb

�

��

��

��

��
��
�

��
��
��
��
��

�−
��

�

��
��
���

��
�

��
��
���
��

�−
��

�

��
��
���

��

��
��
���

��
�

��
��
���
��

�−
��

�

��
��
���

��
�����������

�

������
�����
�����������−���
����������
����������−���
���������
����������
����������−���
���������

Figure 3.14: The graphics object bp in its full
glory.

This step-wise buildup –taking a graphics object already produced in some way and
then further refining it– can be more convenient and easy to manage than, say, pro-
viding all the instructions upfront to the single function call that creates the graphic.
We can quickly try out different visualization ideas without having to rebuild our
plots each time from scratch, but rather store the partially finished object and then
modify it in different ways. For example we can switch our plot to polar coordinates
to create an alternative visualization of the barplot.

pb.polar = pb + coord_polar() +

theme(axis.text.x = element_text(angle = 0, hjust = 1),

axis.text.y = element_blank(),

axis.ticks = element_blank()) +

xlab("") + ylab("")

pb.polar
�����

�����������−

����������

����������−������������

����������

����������−���

���������

������
�����
�����������−���
����������
����������−���
���������
����������
����������−���
���������

Figure 3.15: A barplot in a polar coordinate
system.

Note above that we can override previously set theme parameters by simply

setting them to a new value – no need to go back to recreating pb, where we originally

set them.

3.6 Visualization of 1D data

A common task in biological data analysis is the comparison between several samples
of univariate measurements. In this section we’ll explore some possibilities for visual-

76 ����

izing and comparing such samples. As an example, we’ll use the intensities of a set of
four genes Fgf4, Gata4, Gata6 and Sox210. On the array, they are represented by 10 You can read more about these genes in the

paper associated with the data.
selectedProbes = c(Fgf4 = "1420085_at", Gata4 = "1418863_at",

Gata6 = "1425463_at", Sox2 = "1416967_at")

To extract data from this representation and convert them into a dataframe, we
use the function melt from the reshape2 package11. 11We’ll talk more about the concepts and me-

chanics of different data representations in
Section 14.11.

library("reshape2")

genes = melt(exprs(x)[selectedProbes,], varnames = c("probe", "sample"))

head(genes)

probe sample value

1 1420085_at 1 E3.25 3.027715

2 1418863_at 1 E3.25 4.843137

3 1425463_at 1 E3.25 5.500618

4 1416967_at 1 E3.25 1.731217

5 1420085_at 2 E3.25 9.293016

6 1418863_at 2 E3.25 5.530016

For good measure, we also add a column that provides the gene symbol along with
the probe identifiers.

genes$gene = names(selectedProbes)[match(genes$probe, selectedProbes)]

3.6.1 Barplots

�

�

�

�

�

���� ����� ����� ����
����

��
���

Figure 3.16: Barplots showing the means of the
distributions of expression measurements from 4
probes.

A popular way to display data such as in our dataframe genes is through barplots. See
Fig. 3.16.

ggplot(genes, aes(x = gene, y = value)) +

stat_summary(fun.y = mean, geom = "bar")

In Figure 3.16, each bar represents the mean of the values for that gene. Such plots

are seen a lot in the biological sciences, as well as in the popular media. The data

summarization into only the mean looses a lot of information, and given the amount

of space it takes, a barplot can be a poor way to visualise data12. 12 In fact, if the mean is not an appropriate
summary, such as for highly skewed distributions,
or datasets with outliers, the barplot can be
outright misleading.

Sometimes we want to add error bars, and one way to achieve this in ggplot2 is as
follows.

library("Hmisc")

ggplot(genes, aes(x = gene, y = value, fill = gene)) +

stat_summary(fun.y = mean, geom = "bar") +

stat_summary(fun.data = mean_cl_normal, geom = "errorbar",

width = 0.25)

Here, we see again the principle of layered graphics: we use two summary func-

tions, mean and mean_cl_normal, and two associated geometric objects, bar and

errorbar. The function mean_cl_normal is from the Hmisc package and computes

the standard error (or confidence limits) of the mean; it’s a simple function, and we

���� ������� �������� �� � 77

could also compute it ourselves using base R expressions if we wished to do so. We

also colored the bars to make the plot more pleasant.

���

���

���

���

���� ����� ����� ����
����

��
���

����
����
�����
�����
����

Figure 3.17: Barplots with error bars indicating
standard error of the mean.

3.6.2 Boxplots

It’s easy to show the same data with boxplots.

p = ggplot(genes, aes(x = gene, y = value, fill = gene))

p + geom_boxplot()

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

���

���

���

����

����

���� ����� ����� ����
����

��
���

����
����
�����
�����
����

Figure 3.18: Boxplots.

Compared to the barplots, this takes a similar amount of space, but is much more

informative. In Figure 3.18 we see that two of the genes (Gata4, Gata6) have relatively

concentrated distributions, with only a few data points venturing out to the direction

of higher values. For Fgf4, we see that the distribution is right-skewed: the median,

indicated by the horizontal black bar within the box is closer to the lower (or left) side

of the box. Analogously, for Sox2 the distribution is left-skewed.

3.6.3 Violin plots

A variation of the boxplot idea, but with an even more direct representation of the

shape of the data distribution, is the violin plot. Here, the shape of the violin gives a

rough impression of the distribution density.

p + geom_violin()

3.6.4 Dot plots and beeswarm plots

���

���

���

����

����

���� ����� ����� ����
����

��
���

����
����
�����
�����
����

Figure 3.19: Violin plots.

If the number of data points is not too large, it is possible to show the data points
directly, and it is good practice to do so, compared to using more abstract summaries.
However, plotting the data directly will often lead to overlapping points, which can be
visually unpleasant, or even obscure the data. We can try to layout the points so that
they are as near possible to their proper locations without overlap (Wilkinson, 1999).

p + geom_dotplot(binaxis = "y", binwidth = 1/6,

stackdir = "center", stackratio = 0.75,

aes(color = gene))

The plot is shown in the left panel of Figure 3.20. They-coordinates of the points

are discretized into bins (above we chose a bin size of 1/6), and then they are stacked

next to each other.

An alternative is provided by the package ggbeeswarm, which provides geom_beeswarm.

library("ggbeeswarm")

p + geom_beeswarm(aes(color = gene))

78 ����

●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●●●●●

●●
●●●●

●
●●

●

●

●

●

●
●

●
●●●
●

●●●●
●●
●●

●●
●●
●●
●

●●●

●●●
●●●

●●●●●
●

●
●
●

●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●

●●●

●●●●
●●
●●

●

●●
●
●●
●

●●

●●
●●

●●
●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●
●●●●●

●

●●
●

●●●
●●
●

●●

●●

●
●

●

●●
●

●●●●●
●●●

●●

●●●

●●●

●

●●●

●●
●●

●

●●
●
●●

●●●●●●
●●

●●●
●

●●●●
●●●

●●●●●●●
●●●
●●●●
●●●●
●●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●

●●●

●

���

���

���

����

����

���� ����� ����� ����
����

��
���

����
●

●

●

●

����
�����
�����
����

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●●

●●●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●
●
●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●
●

●
●

●●
●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

���

���

���

����

����

���� ����� ����� ����
����

��
���

����
●

●

●

●

����
�����
�����
����

Figure 3.20: Left: dot plots, made using
geom_dotplot from ggplot2. Right: beeswarm
plots, made using geom_beeswarm from gg-
beeswarm.

The plot is shown in the right panel of Figure 3.20. The layout algorithm tries to

avoid overlaps between the points. If a point were to overlap an existing point, it is

shifted sideways (along the x-axis) by a small amount sufficient to avoid overlap.

Some twiddling with layout parameters is usually needed for each new dataset to

make a dot plot or a beeswarm plot look good.

3.6.5 Density plots

Yet another way to represent the same data is by density plots (Figure 3.21).

ggplot(genes, aes(x = value, color = gene)) + geom_density()

Density estimation has a number of complications, in particular, the need for

choosing a smoothing window. A window size that is small enough to capture peaks in

the dense regions of the data may lead to instable (“wiggly”) estimates elsewhere. On

the other hand, if the window is made bigger, pronounced features of the density, such

as sharp peaks, may be smoothed out. Moreover, the density lines do not convey the

information on how much data was used to estimate them, and plots like Figure 3.21

can be especially problematic if the sample sizes for the curves differ.

����

����

����

����

��� ��� ��� ���� ����
�����

��
��
���

����
����
�����
�����
����

Figure 3.21: Density plots.

3.6.6 ECDF plots

The mathematically most convenient way to describe the distribution of a one-

dimensional random variableX is its cumulative distribution function (CDF), i. e.,

the function

F (x) = P(X  x), (3.1)

where x takes all values along the real axis. The density ofX is then the derivative

of F , if it exists13. The definition of the CDF can also be applied to finite samples of 13 By its definition, F tends to 0 for small x
(x ! −1) and to 1 for large x (x ! +1).X , i. e., samples x1, . . . ,xn . The empirical cumulative distribution function (ECDF) is

���� ������� �������� �� � 79

simply (Figure 3.22):

Fn(x) =
1

n

nX

i=1
x xi

. (3.2)

ggplot(genes, aes(x = value, color = gene)) + stat_ecdf()

����

����

����

����

����

��� ��� ��� ���� ����
�����

�

����
����
�����
�����
����

Figure 3.22: Empirical cumulative distribution
functions (ECDF).

The ECDF has several nice properties:

• It is lossless - the ECDF Fn(x) contains all the information contained in the original

sample x1, . . . ,xn (except the –unimportant– order of the values).

• As n grows, the ECDF Fn(x) converges to the true CDF F (x). Even for limited sam-

ple sizes n, the difference between the two functions tends to be small. Note that

this is not the case for the empirical density! Without smoothing, the empiri-

cal density of a finite sample is a sum of Dirac delta functions, which is difficult

to visualize and quite different from any underlying smooth, true density. With

smoothing, the difference can be less pronounced, but is difficult to control, as we

discussed above.

3.6.7 The effect of transformations on densities

�

�����

�����

�����

� ��� ��� ��� ���
�

��
��
�

�

����

����

����

����

−��� ��� ��� ��� ���
������

��
��
�

Figure 3.23: Histograms of the same data, with
and without logarithmic transformation. The
number of modes is different.

It is tempting to look at histograms or density plots and inspect them for evidence

of bimodality (or multimodality) as an indication of some underlying biological phe-

nomenon. Before doing so, it is important to remember that the number of modes of

a density depends on scale transformations of the data, via the chain rule. A simple

example, with a mixture of two normal distributions, is shown in Figure 3.23.

sim <- data_frame(

x = exp(rnorm(

n = 1e5,

mean = sample(c(2, 5), size = 1e5, replace = TRUE))))

ggplot(sim, aes(x)) +

geom_histogram(binwidth = 10, boundary = 0) + xlim(0, 400)

ggplot(sim, aes(log(x))) + geom_histogram(bins = 30)

I Question 3.6.1. Consider a log-normal mixture model as in the code above. What is

the density function ofX ? What is the density function of loд(X)? How many modes

do these densities have, as a function of the parameters of the mixture model (mean

and standard deviation of the component normals, and mixture fraction)?

3.7 Visualization of 2D data: scatterplots

Figure 3.24: Scatterplot of 45101 expression
measurements for two of the samples.

Scatterplots are useful for visualizing treatment–response comparisons (as in Fig-
ure 3.4), associations between variables (as in Figure 3.11), or paired data (e. g., a
disease biomarker in several patients before and after treatment). We use the two

80 ����

dimensions of our plotting paper, or screen, to represent the two variables. Let us take
a look at differential expression between a wildtype and an FGF4-KO sample.

scp = ggplot(dfx, aes(x = ‘59 E4.5 (PE)‘ ,

y = ‘92 E4.5 (FGF4-KO)‘))

scp + geom_point()

The labels 59 E4.5 (PE) and 92 E4.5 (FGF4-KO) refer to column names

(sample names) in the dataframe dfx, which we created above. Since they contain

special characters (spaces, parentheses, hyphen) and start with numerals, we need to

enclose them with the downward sloping quotes to make them syntactically digestible

for R. The plot is shown in Figure 3.24. We get a dense point cloud that we can try and

interpret on the outskirts of the cloud, but we really have no idea visually how the

data are distributed within the denser regions of the plot.

One easy way to ameliorate the overplotting is to adjust the transparency (alpha

value) of the points by modifying the alpha parameter of geom_point (Figure 3.25).

Figure 3.25: As Figure 3.24, but with semi-
transparent points to resolve some of the over-
plotting.

scp + geom_point(alpha = 0.1)

This is already better than Figure 3.24, but in the more dense regions even the
semi-transparent points quickly overplot to a featureless black mass, while the more
isolated, outlying points are getting faint. An alternative is a contour plot of the 2D
density, which has the added benefit of not rendering all of the points on the plot, as
in Figure 3.26.

scp + geom_density2d()

�

�

�

�

�

�

� � � � �
������������

��
��
��
��
��
��

�−
��

�

Figure 3.26: As Figure 3.24, but rendered as a
contour plot of the 2D density estimate.

However, we see in Figure 3.26 that the point cloud at the bottom right (which
contains a relatively small number of points) is no longer represented. We can
somewhat overcome this by tweaking the bandwidth and binning parameters of
geom_density2d (Figure 3.27, left panel).

scp + geom_density2d(h = 0.5, bins = 60)

We can fill in each space between the contour lines with the relative density of
points by explicitly calling the function stat_density2d (for which geom_density2d

is a wrapper) and using the geometric object polygon, as in the right panel of Fig-
ure 3.27.

library("RColorBrewer")

colorscale = scale_fill_gradientn(

colors = rev(brewer.pal(9, "YlGnBu")),

values = c(0, exp(seq(-5, 0, length.out = 100))))

scp + stat_density2d(h = 0.5, bins = 60,

aes(fill = ..level..), geom = "polygon") +

colorscale + coord_fixed()

We used the function brewer.pal from the package RColorBrewer to define the

color scale, and we added a call to coord_fixed to fix the aspect ratio of the plot, to

make sure that the mapping of data range to x- andy-coordinates is the same for the

two variables. Both of these issues merit a deeper look, and we’ll talk more about plot

���� ������� �������� �� � 81

�

��

� ��
������������

��
��
��
��
��
��

�−
��

�

�

��

� ��
������������

��
��
��
��
��
��

�−
��

�

����

����

����

�����

Figure 3.27: Left: as Figure 3.26, but with smaller
smoothing bandwidth and tighter binning for the
contour lines. Right: with color filling.

shapes in Section 3.7.1 and about colors in Section 3.9.

The density based plotting methods in Figure 3.27 are more visually appealing and

interpretable than the overplotted point clouds of Figures 3.24 and 3.25, though we

have to be careful in using them as we loose a lot of the information on the outlier

points in the sparser regions of the plot. One possibility is using geom_point to add

such points back in.

But arguably the best alternative, which avoids the limitations of smoothing, is

hexagonal binning (Carr et al., 1987).

scp + geom_hex() + coord_fixed()

scp + geom_hex(binwidth = c(0.2, 0.2)) + colorscale +

coord_fixed()

�

��

��

� �� ��
������������

��
��
��
��
��
��

�−
��

�

���
���
���
����

�����

�

��

��

� �� ��
������������

��
��
��
��
��
��

�−
��

�

���

���

���
�����

Figure 3.28: Hexagonal binning. Left: default
parameters. Right: finer bin sizes and customized
color scale.

3.7.1 Plot shapes

Choosing the proper shape for your plot is important to make sure the information is

conveyed well. By default, the shape parameter, that is, the ratio, between the height

of the graph and its width, is chosen by ggplot2 based on the available space in the

current plotting device. The width and height of the device are specified when it is

opened in R, either explicitly by you or through default parameters14. Moreover, the 14 E. g., see the manual pages of the pdf and png

functions.

82 ����

graph dimensions also depend on the presence or absence of additional decorations,

like the color scale bars in Figure 3.28.

There are two simple rules that you can apply for scatterplots:

• If the variables on the two axes are measured in the same units, then make

sure that the same mapping of data space to physical space is used – i. e., use

coord_fixed. In the scatterplots above, both axes are the logarithm to base 2

of expression level measurements, that is a change by one unit has the same mean-

ing on both axes (a doubling of the expression level). Another case is principal

component analysis (PCA), where the x-axis typically represents component 1,

and they-axis component 2. Since the axes arise from an orthonormal rotation

of input data space, we want to make sure their scales match. Since the variance

of the data is (by definition) smaller along the second component than along the

first component (or at most, equal), well-done PCA plots usually have a width that’s

larger than the height.

• If the variables on the two axes are measured in different units, then we can still

relate them to each other by comparing their dimensions. The default in many

plotting routines in R, including ggplot2, is to look at the range of the data and map

it to the available plotting region. However, in particular when the data more or

less follow a line, looking at the typical slope of the line can be useful. This is called

banking (Cleveland et al., 1988).

To illustrate banking, let’s use the classic sunspot data from Cleveland’s paper.
�

��

���

���

���� ���� ���� ����
����

��
�
��
�

���������
���� ���� ���� ����

����

��
�
��
�

Figure 3.29: The sunspot data. In the upper panel,
the plot shape is roughly quadratic, a frequent
default choice. In the lower panel, a technique
called banking was used to choose the plot shape.

library("ggthemes")

sunsp = tibble(year = time(sunspot.year),

number = as.numeric(sunspot.year))

sp = ggplot(sunsp, aes(x = year, y = number)) + geom_line()

sp

The resulting plot is shown in the upper panel of Figure 3.29. We can clearly see
long-term fluctuations in the amplitude of sunspot activity cycles, with particularly
low maximum activities in the early 1700s, early 1800s, and around the turn of the
20th century. But now lets try out banking.

ratio = with(sunsp, bank_slopes(year, number))

sp + coord_fixed(ratio = ratio)

What the algorithm does is to look at the slopes in the curve, and in particular, the

above call to bank_slopes computes the median absolute slope, and then with the

call to coord_fixed we shape the plot such that this quantity becomes 1. The result

is shown in the lower panel of Figure 3.29. Quite counter-intuitively, even though the

plot takes much smaller space, we see more on it! Namely, we can see the saw-tooth

shape of the sunspot cycles, with sharp rises and more slow declines.

���� ������� �������� �� � 83

3.8 3–5D data

Sometimes we want to show the relations between more than two variables. Obvious

choices for including additional dimensions are the plot symbol shapes and colors.

The geom_point geometric object offers the following aesthetics (beyond x and y):

• fill

• color

• shape

• size

• alpha

They are explored in the manual page of the geom_point function. fill and color

refer to the fill and outline color of an object, alpha to its transparency level. Above,

in Figures 3.25 and following, we have used color or transparency to reflect point

density and avoid the obscuring effects of overplotting. Instead, we can use them

show other dimensions of the data (but of course we can only do one or the other). In

principle, we could use all the 5 aesthetics listed above simultaneously to show up to

7-dimensional data; however, such a plot would be hard to decipher, and usually we

are better off with sticking to at most one or two additional dimensions and mapping

them to a choice of the available aesthetics.

3.8.1 Faceting

Another way to show additional dimensions of the data is to show multiple plots that
result from repeatedly subsetting (or “slicing”) our data based on one (or more) of
the variables, so that we can visualize each part separately. So we can, for instance,
investigate whether the observed patterns among the other variables are the same or
different across the range of the faceting variable. Let’s look at an example15 15 The first two lines this code chunk are not

strictly necessary – they’re just reformatting the
lineage column of the dftx dataframe, to make
the plots look better.

library("magrittr")

dftx$lineage %<>% sub("^$", "no", .)

dftx$lineage %<>% factor(levels = c("no", "EPI", "PE", "FGF4-KO"))

ggplot(dftx, aes(x = X1426642_at, y = X1418765_at)) +

geom_point() + facet_grid(. ~ lineage)

●

●

●
●

●●
●

●

●
●● ●

●

●

●
●

●●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●●

●
●

●
●

●

●●●

●

●●
●

●

●
●

●

●

●
●
●

● ●●
●

● ●
●

●
●

●

●

●
● ●

●

● ●
●

●

●
●
●

● ●●●●

●●
●

●

●

�� ��� �� ����−��

��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ����
�
�
�
��
��

�����������

��
��
��
��
��
�

Figure 3.30: An example for faceting: the same
data as in Figure 3.10, but now split by the
categorical variable lineage.

The result is shown in Figure 3.30. We used the formula language to specify by
which variable we want to do the splitting, and that the separate panels should be in

84 ����

different columns: facet_grid(. ⇠ lineage). In fact, we can specify two
faceting variables, as follows; the result is shown in Figure 3.31.

ggplot(dftx,

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_grid(Embryonic.day ~ lineage)

●

●

●
●

●
●

●

●

●
●● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●●●

●

●●
●

●

●

●

●

●

●
●
●

● ●●

●
● ●
●

●

●

●

●

●

● ●

●

● ●
●

●

●
●
●

●
●●

●●

●●
●

●

●

�� ��� �� ����−��

�����
����

����

��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ���� ��� ��� ���� ����

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

�����������

��
��
��
��
��
�

Figure 3.31: Faceting: the same data as in
Figure 3.10, split by the categorical variables
Embryonic.day (rows) and lineage (columns).

Another useful function is facet_wrap: if the faceting variable has too many

levels for all the plots to fit in one row or one column, then this function can be used

to wrap them into a specified number of columns or rows.

We can use a continuous variable by discretizing it into levels. The function cut is
useful for this purpose.

ggplot(mutate(dftx, Tdgf1 = cut(X1450989_at, breaks = 4)),

aes(x = X1426642_at, y = X1418765_at)) + geom_point() +

facet_wrap(~ Tdgf1, ncol = 2)

We see in Figure 3.32 that the number of points in the four panel is different, this

is because cut splits into bins of equal length, not equal number of points. If we want

the latter, then we can use quantile in conjunction with cut.

●
●

●

●

●

●
●

● ●
●
●

●
●

●

●

●
● ●

● ●

●

●
●

● ●●

●

●
●

●

●

●

●
●

●
●

●

●
● ●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●●

●

●●

●
●

●

● ●
●

●

●
●
●

● ●●
●●

●●
●

●

●

����������� �����������

����������� �����������

��� ��� ���� ���� ��� ��� ���� ����

�

�

�

��

��

�

�

�

��

��

�����������

��
��
��
��
��
�

Figure 3.32: Faceting: the same data as in
Figure 3.10, split by the continuous variable
X1450989_at and arranged by facet_wrap.

Axes scales In Figures 3.30–3.32, the axes scales are the same for all plots. Alterna-

tively, we could let them vary by setting the scales argument of the facet_grid

and facet_wrap; this parameters allows you to control whether to leave the x-axis,

they-axis, or both to be freely variable. Such alternatives scalings might allows us to

see the full detail of each plot and thus make more minute observations about what is

going on in each. The downside is that the plot dimensions are not comparable across

the groupings.

���� ������� �������� �� � 85

Implicit faceting You can also facet your plots (without explicit calls to facet_grid

and facet_wrap) by specifying the aesthetics. A very simple version of implicit

faceting is using a factor as your x-axis, such as in Figures 3.16–3.20

3.8.2 Interactive graphics

The plots generated thus far have been static images. You can add an enormous

amount of information and expressivity by making your plots interactive. It is impos-

sible here for us to convey interactive visualizations, but we provide pointers to some

important resources.

shiny

Rstudio’s shiny is a web application framework for R. It makes it easy to create interac-

tive displays with sliders, selectors and other control elements that allow changing all

aspects of the plot(s) shown – since the interactive elements call back directly into the

R code that produces the plot(s). See the shiny gallery for some great examples.

ggvis

ggvis is a graphics system for R that builds upon shiny and has an underlying theory,

look-and-feel and programming interface similar to ggplot2.

As a consequence of interactivity in shiny and ggvis, there needs to be an R inter-

preter running with the underlying data and code to respond to the user’s actions

while she views the graphic. This R interpreter could be on the local machine, or on

a server; in both cases, the viewing application is a web browser, and the interaction

with R goes through web protocols (http, or https). That is, of course, different from a

regular static graphic in a PDF file or in an HTML report, which is produced once and

can then be viewed without any

plotly

A great web-based tool for interactive graphic generation is plotly. You can view
some examples of interactive graphics online at https://plot.ly/r. To create
your own interactive plots in R, you can use code like

library("plotly")

plot_ly(economics, x = date, y = unemploy / pop)

Like with shiny and ggvis, the graphics are viewed in an HTML browser, however,

no running R session is required. The graphics are self-contained HTML documents

whose “logic” is coded in JavaScript, or more precisly, in the D3.js system.

86 ����

rgl, webgl

For visualising 3D objects (say, a geometrical structure), there is the package rgl. It

produces interactive viewer windows (either in specialized graphics device on your

screen, or through a web browser) in which you can rotate the scene, zoom and in out,

etc. An screenshot of the scene produced by the code below is shown in Figure 3.33.

Figure 3.33: rgl rendering of the volcano data,
the topographic information for Maunga Whau
(Mt Eden), one of about 50 volcanos in the
Auckland volcanic field.

data("volcano")

volcanoData = list(

x = 10 * seq_len(nrow(volcano)),

y = 10 * seq_len(ncol(volcano)),

z = volcano,

col = terrain.colors(500)[cut(volcano, breaks = 500)]

)

library("rgl")

with(volcanoData, persp3d(x, y, z, color = col))

In the code above, the base R function cut computes a mapping from the value

range of the volcano data to the integers between 1 and 50016, which we use to index 16More precisely, it returns a factor with as many
levels, which we let R autoconvert to integers.the color scale, terrain.colors(500).

For more information, consult the package’s excellent vignette.

3.9 Color
�

��

�

�

� �

�

Figure 3.34: Basic R colors.

An important consideration when making plots is the coloring that we use in them.

Most R users are likely familiar with the built-in R color scheme, used by base R graph-

ics, as shown in Figure 3.34.

pie(rep(1, 8), col=1:8)

These color choices date back from 1980s hardware, where graphics cards handled

colors by letting each pixel either fully use or not use each of the three basic color

channels of the display: red, green and blue (RGB): this leads to 23 = 8 combina-

tions, which lie at the 8 the extreme corners of the RGB color cube17. The colors in 17 Thus the 8th color should be white; in R,
this was replaced by grey, as you can see in
Figure 3.34.

Figure 3.34 are harsh on the eyes, and there is no good excuse any more for creating

graphics that are based on this palette. Fortunately, the default colors used by some of

the more modern visualization oriented packages (including ggplot2) are much better

already, but sometimes we want to make our own choices.

In Section 3.7 we saw the function scale_fill_gradientn, which allowed us

to create the color gradient used in Figures 3.27 and 3.28 by interpolating the basic

color palette defined by the function brewer.pal in the RColorBrewer package. This

package defines a great set of color palettes. We can see all of them at a glance by

using the function display.brewer.all (Figure 3.35).

��������������������
����������������

��������
���
�����������������������
������������������������������

�������������������������������������

display.brewer.all()

���� ������� �������� �� � 87

We can get information about the available color palettes from brewer.pal.info.

head(brewer.pal.info)

maxcolors category colorblind

BrBG 11 div TRUE

PiYG 11 div TRUE

PRGn 11 div TRUE

PuOr 11 div TRUE

RdBu 11 div TRUE

RdGy 11 div FALSE

table(brewer.pal.info$category)

##

div qual seq

9 8 18

The palettes are divided into three categories:

• qualitative: for categorical properties that have no intrinsic ordering. The Paired

palette supports up to 6 categories that each fall into two subcategories - like

before and after, with and without treatment, etc.

• sequential: for quantitative properties that go from low to high

• diverging: for quantitative properties for which there is a natural midpoint or neu-

tral value, and whose value can deviate both up- and down; we’ll see an example in

Figure 3.37.

To obtain the colors from a particular palette we use the function brewer.pal. Its
first argument is the number of colors we want (which can be less than the available
maximum number in brewer.pal.info).

brewer.pal(4, "RdYlGn")

[1] "#D7191C" "#FDAE61" "#A6D96A" "#1A9641"

If we want more than the available number of preset colors (for example so we can

plot a heatmap with continuous colors) we can interpolate using the colorRampPalette

function18. 18 colorRampPalette returns a function of one
parameter, an integer. In the code shown, we call
that function with the argument 100.

Figure 3.36: A quasi-continuous color palette
derived by interpolating between the colors
darkorange3, white and darkblue.

mypalette = colorRampPalette(c("darkorange3", "white", "darkblue"))(100)

head(mypalette)

[1] "#CD6600" "#CE6905" "#CF6C0A" "#D06F0F" "#D17214" "#D27519"

par(mai = rep(0.1, 4))

image(matrix(1:100, nrow = 100, ncol = 10), col = mypalette,

xaxt = "n", yaxt = "n", useRaster = TRUE)

88 ����

3.10 Heatmaps

Heatmaps are a powerful of visualising large, matrix-like datasets and giving a quick
overview over the patterns that might be in there. There are a number of heatmap
drawing functions in R; one that is convenient and produces good-looking output
is the function pheatmap from the eponymous package19. In the code below, we 19 A very versatile and modular alternative is the

ComplexHeatmap package.first select the top 500 most variable genes in the dataset x and define a function
rowCenter that centers each gene (row) by subtracting the mean across columns. By
default, pheatmap uses the RdYlBu color palette from RcolorBrewer in conjuction with
the colorRampPalette function to interpolate the 11 color into a smooth-looking
palette (Figure 3.37).

library("pheatmap")

topGenes = order(rowVars(exprs(x)), decreasing = TRUE)[seq_len(500)]

rowCenter = function(x) { x - rowMeans(x) }

pheatmap(rowCenter(exprs(x)[topGenes,]),

show_rownames = FALSE, show_colnames = FALSE,

breaks = seq(-5, +5, length = 101),

annotation_col =

pData(x)[, c("sampleGroup", "Embryonic.day", "ScanDate")],

annotation_colors = list(

sampleGroup = groupColor,

genotype = c(‘FGF4-KO‘ = "chocolate1", ‘WT‘ = "azure2"),

Embryonic.day = setNames(brewer.pal(9, "Blues")[c(3, 6, 9)],

c("E3.25", "E3.5", "E4.5")),

ScanDate = setNames(brewer.pal(nlevels(x$ScanDate), "YlGn"),

levels(x$ScanDate))

),

cutree_rows = 4

)

Let us take a minute to deconstruct this rather massive-looking call to pheatmap.

The options show_rownames and show_colnames control whether the row and

column names are printed at the sides of the matrix. Because our matrix is large in re-

lation to the available plotting space, the labels would anyway not be readable, and we

suppress them. The annotation_col argument takes a data frame that carries ad-

ditional information about the samples. The information is shown in the colored bars

on top of the heatmap. There is also a similar annotation_row argument, which

we haven’t used here, for colored bars at the side. annotation_colors is a list of

named vectors by which we can override the default choice of colors for the annota-

tion bars. Finally, with the cutree_rows argument we cut the row dendrogram into

four (an arbitrarily chosen number) clusters, and the heatmap shows them by leaving

a bit of white space in between. The pheatmap function has many further options,

and if you want to use it for your own data visualizations, it’s worth studying them.

���� ������� �������� �� � 89

�����������
�������������
��������

��������
����−��−��
����−��−��
����−��−��
����−��−��
����−��−��
����−��−��
����−��−��
����−��−��
����−��−��

�������������
�����
����
����

�����������
�����
�����������−���
����������
����������−���
���������
����������
����������−���
���������

−�

−�

�

�

�

Figure 3.37: A heatmap of relative expression
values, i. e., log2 fold change compared to the
average expression of that gene (row) across
all samples (columns). The color scale uses a
diverging palette, whose neutral midpoint is at 0.

3.10.1 Dendrogram ordering

The ordering of the rows and columns in a heatmap has an enormous impact on the

visual impact it makes, and it can be difficult to decide which patterns are real, and

which are consequences of arbitrary layout decisions20. Let’s keep in mind that: 20 In Chapter 5, we will learn about formal
methods for evaluating cluster significance.

• Ordering the rows and columns by cluster dendrogram (as in Figure 3.37) is an

arbitrary choice, and you could just as well make other choices.

• Even if you settle on dendrogram ordering, there is an essentially arbitrary choice

at each internal branch, as each branch could be flipped without changing the

topology of the tree.

I Question 3.10.1. What other ordering methods can you think of?

I Answer 3.10.1. Among the methods proposed is the travelling salesman prob-

lem (McCormick Jr et al., 1972) or projection on the first principal component (for

instance, see the examples in the manual page of pheatmap).

I Question 3.10.2. Check the manual page of the hclust function (which, by

default, is used by pheatmap) for how it deals with the decision of how to pick which

branches of the subtree go left and right.

I Question 3.10.3. Check the argument clustering_callback of the pheatmap

function.

90 ����

3.10.2 Color spaces

Color perception in humans (von Helmholtz, 1867) is three-dimensional21. There 21 Physically, there is an infinite number of wave-
lengths of light and an infinite number of ways
of mixing them, so other species, or robots, can
perceive less or more than three colors.

are different ways of parameterizing this space. Above we already encountered the
RGB color model, which uses three values in [0,1], for instance at the beginning of
Section 3.4, where we printed out the contents of groupColor:

groupColor[1]

E3.25

"#CAB2D6"

Here, CA is the hexadecimal representation for the strength of the red color chan-

nel, B2 of the green and D6 of the green color channel. In decimal, these numbers are

202, 178 and 214, respectively. The range of these values goes from to 0 to 255, so by

dividing by this maximum value, an RGB triplet can also be thought of as a point in

the three-dimensional unit cube.

The function hcl uses a different coordinate system, which consists of the three

coordinates hueH , an angle in [0, 360], chromaC , and lightness L as a value in

[0, 100]. The possible values forC depend on some constraints, but are generally

between 0 and 255.

Figure 3.38: Circles in HCL colorspace. Upper
panel: The luminosity L is fixed to 75, while the
angular coordinateH (hue) varies from 0 to 360
and the radial coordinateC = 0, 10, . . . , 60.
Lower panel: constant chromaC = 50,H as
above, and varying luminosity L = 10, 20, . . . , 90.

The hcl function corresponds to polar coordinates in the CIE-LUV22 and is de-

22 CIE: Commission Internationale de l’Éclairage –
see e. g. Wikipedia for more on this.

signed for area fills. By keeping chroma and luminescence coordinates constant and

only varying hue, it is easy to produce color palettes that are harmonious and avoid

irradiation illusions that make light colored areas look bigger than dark ones. Our

attention also tends to get drawn to loud colors, and fixing the value of chroma makes

the colors equally attractive to our eyes.

There are many ways of choosing colors from a color wheel. Triads are three

colors chosen equally spaced around the color wheel; for example,H = 0, 120, 240

gives red, green, and blue. Tetrads are four equally spaced colors around the color

wheel, and some graphic artists describe the effect as "dynamic". Warm colors are a

set of equally spaced colors close to yellow, cool colors a set of equally spaced colors

close to blue. Analogous color sets contain colors from a small segment of the color

wheel, for example, yellow, orange and red, or green, cyan and blue. Complementary

colors are colors diametrically opposite each other on the color wheel. A tetrad is

two pairs of complementaries. Split complementaries are three colors consisting of

a pair of complementaries, with one partner split equally to each side, for example,

H = 60, 240 − 30, 240 + 30. This is useful to emphasize the difference between a pair

of similar categories and a third different one. A more thorough discussion is provided

in the references (Mollon, 1995; Ihaka, 2003).

���� ������� �������� �� � 91

Lines vs areas

For lines and points, we want that they show a strong contrast to the background, so

on a white background, we want them to be relatively dark (low lightness L). For area

fills, lighter, more pastell-type colors with low to moderate chromatic content are

usually more pleasant.

3.11 Data transformations

Plots in which most points are huddled up in one area, with a lot of sparsely pop-

ulated space, are difficult to read. If the histogram of the marginal distribution of

a variable has a sharp peak and then long tails to one or both sides, transforming

the data can be helpful. These considerations apply both to x and y aesthetics, and

to color scales. In the plots of this chapter that involved the microarray data, we

used the logarithmic transformation23 – not only in scatterplots like Figure 3.24 23We used it implicitly since the data in
the ExpressionSet object x already come log-
transformed.

for the x andy-coordinates, but also in Figure 3.37 for the color scale that repre-

sents the expression fold changes. The logarithm transformation is attractive be-

cause it has a definitive meaning - a move up or down by the same amount on a log-

transformed scale corresponds to the same multiplicative change on the original

scale: log(ax) = loga + logx .

Sometimes the logarithm however is not good enough, for instance when the

data include zero or negative values, or when even on the logarithmic scale the data

distribution is highly uneven. From the upper panel of Figure 3.39, it is easy to take

away the impression that the distribution of M depends on A, with higher variances

for lower A. However, this is entirely a visual artefact, as the lower panel confirms:

the distribution of M is independent of A, and the apparent trend we saw in the upper

panel was caused by the higher point density at smaller A.

Figure 3.39: The effect of rank transformation on
the visual perception of dependency.

gg = ggplot(tibble(

A = exprs(x)[, 1],

M = rnorm(length(A))),

aes(y = M))

gg + geom_point(aes(x = A))

gg + geom_point(aes(x = rank(A)))

I Question 3.11.1. Can the visual artefact be avoided by using a density- or binning-

based plotting method, as in Figure 3.28?

I Question 3.11.2. Can the rank transformation also be applied when choosing color

scales e. g. for heatmaps? What does histogram equalization in image processing do?

3.12 Mathematical symbols and other fonts

We can use mathematical notation in plot labels, using a notation that is a mix of R
syntax and LATEX-like notation (see help("plotmath") for details):

92 ����

volume = function(rho, nu)

pi^(nu/2) * rho^nu / gamma(nu/2+1)

ggplot(tibble(nu = 1:15,

Omega = volume(1, nu)), aes(x = nu, y = Omega)) +

geom_line() +

xlab(expression(nu)) + ylab(expression(Omega)) +

geom_text(label =

"Omega(rho, nu)==frac(pi^frac(nu, 2) ~ rho^nu, Gamma(frac(nu, 2) + 1))",

parse = TRUE, x = 6, y = 1.5)

Ω�ρ��ν� �
π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ��
Ω�ρ��ν� �

π
ν
��ρν

Γ�ν� � ���

�

�

�

�

� � ��
ν

Ω

Figure 3.40: Volume Ω of the ν -dimensional
sphere with radius ρ = 1, for ν = 1, . . . , 15.

The result is shown in Figure 3.40. It’s also easy to switch to other fonts, for in-
stance the serif font Times (Figure 3.41).

ggplot(genes, aes(x = value, color = gene)) + stat_ecdf() +

theme(text = element_text(family = "Times"))

����

����

����

����

����

��� ��� ��� ���� ����
�����

�

����
����
�����
�����
����

Figure 3.41: As Figure 3.22, with a different font.

In fact, the set of fonts that can be used with a standard R installation are limited,

but luckily there is the package extrafont, which facilitates using fonts other than R’s

set of basic PostScript fonts. There’s some extra work needed before we can use it,

since fonts external to R first need to be made known to it. They could come shipped

with your operating system, a with word processor or another graphics application.

The set of fonts available and their physical location is therefore not standardized, but

will depend on your operating system and further configurations. In the first session

after attaching the extrafont package, you will need to run the function font_import

to import fonts and make them known to the package. Then in each session in which

you want to use them, you need to call the loadfonts function to register them with

one or more of R’s graphics devices. Finally you can use the fonttable function

to list the available fonts. You’ll need to refer to the documentation of the extrafonts

package to see how to make this work on your machine.

����

����

����

����

����

��� ��� ��� ���� ����
�����

�

����

����

�����

�����

����

Figure 3.42: As Figure 3.22, with font “Bauhaus
93”.

I Question 3.12.1. Use extrafont to produce a version of Figure 3.41 with the font

“Bauhaus 93” (or another one available on your system).

I Question 3.12.2. Have a look at the code producing Figure 3.1.

3.13 Genomic data

Figure 3.43: Screenshot from Ensembl genome
browser, showing gene annotation of a genomic
region as well as a read pile-up visualization of an
RNA-Seq experiment.

To visualize genomic data, in addition to the general principles we have discussed in

this chapter, there are some specific considerations. The data are usually associated

with genomic coordinates. In fact genomic coordinates offer a great organising princi-

ple for the integration of genomic data. You will probably have seen genome browser

displays such as in Figure 3.43. Here we’ll briefly show how to produce such plots pro-

grammatically, using your data as well as public annotation. We can only give a short

glimpse, and we refer to resources such as Bioconductor for a fuller picture.

The main challenge of genomic data visualization is the size of genomes. We need

visualizations at multiple scales, from whole genome down to the nucleotide level.

���� ������� �������� �� � 93

It should be easy to zoom in and and out, and we may need differemt visualization

strategies for the different size scales. It can be convenient to visualize biological

molecules (genomes, genes, transcripts, proteins) in a linear manner, although their

embedding in the 3D physical world can matter (a lot).

Let’s start with some fun examples, an ideogram plot of human chromosome 1 (Fig-

ure 3.44) and a plot of the genome-wide distribution of RNA editing sites (Figure 3.45).

���������

Figure 3.44: Chromosome 1 of the human
genome: ideogram plot.

library("ggbio")

data("hg19IdeogramCyto", package = "biovizBase")

plotIdeogram(hg19IdeogramCyto, subchr = "chr1")

Warning: ‘panel.margin‘ is deprecated. Please use ‘panel.spacing‘

property instead

Warning: ‘panel.margin‘ is deprecated. Please use ‘panel.spacing‘

property instead

Warning: ‘panel.margin‘ is deprecated. Please use ‘panel.spacing‘

property instead

The darned_hg19_subset500 lists a selection of 500 RNA editing sites in the

human genome. It was obtained from the Database of RNA editing in flies, mice and

humans (DARNED, http://darned.ucc.ie). The result is shown in Figure 3.45.

����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����
�����
�����
�����
����
����
����
����
����
����
����
����

���� ����� ������ ������ ������ ������

�����
�
�
�
��

Figure 3.45: Karyogram with RNA editing sites.
exReg indicates whether a site is in the coding
region (C), 3’- or 5’-UTR.

library("GenomicRanges")

data("darned_hg19_subset500", package = "biovizBase")

autoplot(darned_hg19_subset500, layout = "karyogram",

aes(color = exReg, fill = exReg))

I Question 3.13.1. Fix the ordering of the chromosome in Figure 3.45 and get rid of

the warning about chromosome lengths.

I Answer 3.13.1. The information on chromosome lengths in the hg19 assembly of

the human genome is (for instance) stored in the ideoCyto dataset. In the following,

we also use the function keepSeqlevels to subset and reorder the chromosomes.

See Figure 3.46

����
����
����
����
����
����
����
����
����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
����

���� ����� ������ ������ ������ ������

�����
�
�
�
��

Figure 3.46: Improved version of Figure 3.45.

data("ideoCyto", package = "biovizBase")

dn = darned_hg19_subset500

seqlengths(dn) = seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]

dn = keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

autoplot(dn, layout = "karyogram",

aes(color = exReg, fill = exReg))

What type of object is darned_hg19_subset500?

darned_hg19_subset500[1:2,]

GRanges object with 2 ranges and 10 metadata columns:

seqnames ranges strand | inchr inrna

<Rle> <IRanges> <Rle> | <character> <character>

[1] chr5 [86618225, 86618225] - | A I

[2] chr7 [99792382, 99792382] - | A I

snp gene seqReg exReg source

94 ����

<character> <character> <character> <character> <character>

[1] <NA> <NA> O <NA> amygdala

[2] <NA> <NA> O <NA> <NA>

ests esta author

<integer> <integer> <character>

[1] 0 0 15342557

[2] 0 0 15342557

seqinfo: 23 sequences from an unspecified genome; no seqlengths

It is a GRanges object, that is, a specialized class from the Bioconductor project for

storing data that are associated with genomic coordinates. Its first three columns are

obligatory: seqnames, the name of the containing biopolymer (in our case, these are

names of human chromosomes), ranges, the genomic coordinates of the intervals

(in this case, the intervals all have length 1, as they each refer to a single nucleotide),

and the DNA strand from which the RNA is transcribed. You can find out more on

how to use this class and its associated infrastructure in the documentation, e. g., the

vignette of the GenomicRanges package. Learning it is worth the effort if you want to

work with genome-associated datasets, as it allows for convenient, efficient and safe

manipulation of these data and provides many powerful utilities.

To Do

• Along chromosome plots, annotation + data, with sequence as the integrating

principle (Gviz).

• HilbertViz

3.14 Recap of this chapter

• You should now be comfortable making beautiful, versatile and easily extendable

plots using ggplot2’s ggplot.

• You should have a basic understanding of the grammar of graphics: the main word

classes and the basic vocabulary.

• You understand the importance of choosing the right colors, proportions, and the

right geom objects.

• Don’t be afraid of setting up your data for faceting – this is a great quick way to

look at many different ways to slice the data in different ways.

• Now you are prepared to explore ggplot2 and plot your data on your own.

3.15 Further reading

The most useful books about ggplot2 is the second edition of Wickham (2016) and the

ggplot2 website. There are a lot of ggplot2 code snippets online, which you will find

through search engines after some exercise (stay critical, not everything online is

���� ������� �������� �� � 95

true, or up-to-date). Of course, the foundation of the system is based on Wilkinson

(2005) and the ideas by Tukey (1977); Cleveland (1988).

3.16 Exercises

I Exercise 3.1 (Themes). Explore how to change the visual appearance of plots with
themes. For example:

ggcars = ggplot(mtcars, aes(x=hp, y=mpg)) + geom_point()

ggcars

ggcars + theme_bw()

ggcars + theme_minimal()

I Exercise 3.2 (Color names in R). Have a look at http://research.stowers-institute.

org/efg/R/Color/Chart

I Exercise 3.3 (xkcd). On a lighter note, you can even modify ggplot2 to make plots in

the style of the popular webcomic XKCD. You do this through manipulating the font

and themes of ggplot2 objects. See http://stackoverflow.com/questions/

12675147/how-can-we-make-xkcd-style-graphs-in-r.

