
Chapter 13

Supervised Learning

Figure 13.1: In a supervised learning setting, we
have a yardstick or plumbline to judge how well
we are doing: the response itself.

A frequent question in biological and biomedical applications is whether a property

of interest (say, disease type, cell type, the prognosis of a patient) can be “predicted”,

given one or more other properties, called the predictors. Often we are motivated by

a situation in which the property to be predicted is unknown (it lies in the future, or is

hard to measure), while the predictors are known. The crucial point is that we learn

the prediction rule from a set of training data in which the property of interest is also

known. Once we have the rule, we can either apply it to new data, and make actual

predictions of unknown outcomes; or we can dissect the rule with the aim of better

understanding the underlying biology.

Compared to unsupervised learning and what we have seen in Chapters 5, 7 and 9,

where we do not know what we are looking for or how to decide whether our result

is “right”, we are on much more solid ground with supervised learning: the objective

is clearly stated, and there are straightforward criteria to measure how well we are

doing.

The central issue in supervised learning1 is overfitting and generalisability: 1 Sometimes the term statistical learning is used,
more or less exchangeably.did we just learn the training data “by heart” by constructing a rule that has 100%

accuracy on the training data, but would perform poorly on any new data? Or did our

rule indeed pick up some of the pertinent patterns in the system being studied, which

will also apply to yet unseen new data?

13.1 Goals for this chapter

In this chapter we will

• see exemplary applications that motivate the use of supervised learning methods

• learn what discriminant analysis does,

• define measures of performance,

• encounter the curse of dimensionality and see what overfitting is,

• find out about regularisation and understand the concepts of generisability and

model complexity,



336 ����

• see how to use cross-validation to tune parameters of the algorithms,

• get to see a unified framework for machine learning algorithms in R that allows

you to use hundreds of methods in a consistent manner,

• discuss method hacking.

13.2 What are the data?

The basic data structure for both supervised and unsupervised learning is (at least

conceptually) a dataframe, where each row corresponds to an object and the columns

are different features2 of the objects. While in unsupervised learning we aim to find 2 Features are usually numerical scalars or
categorical variables, although some methods can
be generalized to work with other data types.

(dis)similarity relationships between the objects based on their feature values (e. g.,

by clustering or ordination), in supervised learning we aim to find a mathematical

function (or a computational algorithm) that predicts the value of one of the features

from the other features. Many implementations require that there are no missing

values, whereas other methods can be generalized to work with some amount of

missing data.

The feature that we select over all the others with the aim of predicting is called

the objective or the response. Sometimes the choice is natural, but sometimes it is

also instructive to reverse the roles, especially if we are interested in dissecting the

prediction function for the purpose of biological understanding, or in disentangling

correlations from causation.

The framework for supervised learning covers both continuous and categorical

response variables. In the continuous case we also call it regression, in the categori-

cal case, classification. It turns out that this distinction is not a detail, as it has quite

far-reaching consequences for the choice of loss function (Section 13.5) and thus the

choice of algorithm (Friedman, 1997).

The first question to consider in any supervised learning task is how the number

of objects compares to the number of predictors. The more data, the better, and much

of the hard work in supervised learning has to do with overcoming the limitations of

having a finite (and typically, too small) training set. validation

learning
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Figure 13.2: In supervised learning, we assign two
different roles to our variables. We have labeled
the explanatory variablesX and the response
variable(s) Y . There are also two different sets of
observations: the training setX` and Y` and the
validation setXv and Yv .

I Question 13.2.1. Give examples where we have encountered instances of super-

vised learning with a categorical response in this book.

13.2.1 Motivating examples

Predicting diabetes type

The diabetes dataset (Reaven and Miller, 1979) presents three different groups of
diabetes patients and five clinical variables measured on them.

library("ggplot2")

library("readr")
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library("magrittr")

diabetes = read_csv("../data/diabetes.csv", col_names = TRUE)

diabetes

## # A tibble: 144 x 7

## id relwt glufast glutest steady insulin group

## <int> <dbl> <int> <int> <int> <int> <int>

## 1 1 0.81 80 356 124 55 3

## 2 3 0.94 105 319 143 105 3

## 3 5 1.00 90 323 240 143 3

## 4 7 0.91 100 350 221 119 3

## 5 9 0.99 97 379 142 98 3

## 6 11 0.90 91 353 221 53 3

## 7 13 0.96 78 290 136 142 3

## 8 15 0.74 86 312 208 68 3

## 9 17 1.10 90 364 152 76 3

## 10 19 0.83 85 296 116 60 3

## # ... with 134 more rows

diabetes$group %<>% factor

We used the forward-backward pipe operator %<>% to convert the group column
into a factor.

library("reshape2")

ggplot(melt(diabetes, id.vars = c("id", "group")),

aes(x = value, col = group)) +

geom_density() + facet_wrap( ~variable, ncol = 2, scales = "free") �������
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Figure 13.3: We see already from the one-
dimensional distributions that some of the
individual variables could potentially predict
which group a patient is more likely to belong to.
Our goal will be to combine variables to improve
these one dimensional predictions.

The plot is shown in Figure 13.3.

Predicting cellular phenotypes

Neumann et al. (2010) observed human cancer cells using live-cell imaging. The

cells were genetically engineered so that their histones were tagged with a green

fluorescent protein (GFP). A genome-wide RNAi library was applied to the cells, and

for each siRNA perturbation, movies of a few hundred cells were recorded for about

two days, to see what effect the depletion of each gene had on cell cycle, nuclear

morphology and cell proliferation. Their paper reports the use of an automated

image classification algorithm that quantified the visual appearance of each cell’s

nucleus and enabled the prediction of normal mitosis states or aberrant nuclei. The

algorithm was trained on the data from around 3000 cells that were annotated by a

human expert. It was then applied to almost 2 billions images of nuclei (Figure 13.4).

Using automated image classification provided scalablity (annotating 2 billion images

manually would take a long time) and objectivity.
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Figure 13.4: The data were images of 2x109 nuclei
from movies. The images were segmented to
identify the nuclei, and numeric features were
computed for each nucleus, corresponding to
size, shape, brightness and lots of other more
or less abstract quantitative summaries of the
joint distribution of pixel intensities. From the
features, the cells were classified into 16 different
nuclei morphology classes, represented by the
rows of the barplot. Representative images for
each class are shown in black and white in the
center column. The class frequencies, which are
very unbalanced, are shown by the lengths of the
bars.

Predicting embryonic cell states

We will revisit the mouse embryo data (Ohnishi et al., 2014), which we have already

seen in Chapters 3, 5 and 7, and show how we can predict the developmental state

(Embryonic Days) from the gene expression measurements.

13.3 Linear discrimination

We start with one of the simplest possible discrimination problems3, where we have 3 Arguably the simplest possible problem is a
single continuous feature, two classes, and the
task of finding a single threshold to discriminate
between the two groups.

objects described by two continuous features (so the objects can be thought of as

points in the 2D plane) and falling into three groups. Our aim is to define class bound-

aries, which are lines in the 2D space.

13.3.1 Diabetes data

Let’s see whether we can predict the feature group from the features insulin and
glutest variables in the diabetes data. It’s always a good idea to first visualise the
data (Figure 13.5).
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ggdb = ggplot(mapping = aes(x = insulin, y = glutest)) +

geom_point(aes(colour = group), data = diabetes)

ggdb
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Figure 13.5: Scatterplot of two of the variables in
the diabetes data. Each point is a sample, and
the color indicates the diabetes type as encoded
in the group variable.

We’ll start with a method called linear discriminant analysis (LDA). This method
is a foundation stone of classification, many of the more complicated (and sometimes
more powerful) algorithms are really just generalisations of LDA.

library("MASS")

diabetes_lda = lda(group ~ insulin + glutest, data = diabetes)

diabetes_lda

## Call:

## lda(group ~ insulin + glutest, data = diabetes)

##

## Prior probabilities of groups:

## 1 2 3

## 0.2222222 0.2500000 0.5277778

##

## Group means:

## insulin glutest

## 1 320.9375 1027.3750

## 2 208.9722 493.9444

## 3 114.0000 349.9737

##

## Coefficients of linear discriminants:

## LD1 LD2

## insulin -0.004463900 -0.01591192

## glutest -0.005784238 0.00480830

##

## Proportion of trace:

## LD1 LD2

## 0.9677 0.0323

ghat = predict(diabetes_lda)$class

table(ghat, diabetes$group)

##

## ghat 1 2 3

## 1 25 0 0

## 2 6 24 6

## 3 1 12 70

mean(ghat != diabetes$group)

## [1] 0.1736111

I Question 13.3.1. What do the different parts of the above output mean?

Now, let’s visualise the LDA result4. We are going to plot the prediction regions 4 Note how we first visualised the data, in Fig-
ure 13.5, and are now going to visualise the fitted
model (Figure 13.6). The prediction regions can,
in principle, be shown for any classification
method, including a “black box” method. On the
other hand, the cluster centers and ellipses in
Figure 13.6 are a method-specific visualisation.

for each of the three groups. We do this by creating a grid of points and using our
prediction rule on each of them. We’ll then also dig a bit deeper into the mechanics
of LDA and plot the class centers (diabetes_lda$means) and ellipses that corre-
spond to the fitted covariance matrix (diabetes_lda$scaling). Assembling this
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visualization requires us to write a bit of code.

make1Dgrid = function(x) {

rg = range(x)

wid = diff(rg)

rg = rg + wid * 0.05 * c(-1, 1)

seq(from = rg[1], to = rg[2], length.out = 100)

}

Set up the points for prediction, a 100 ⇥ 100 grid that covers the data range.

diabetes_grid = with(diabetes,

expand.grid(insulin = make1Dgrid(insulin),

glutest = make1Dgrid(glutest)))

Do the predictions.

diabetes_grid$ghat =

predict(diabetes_lda, newdata = diabetes_grid)$class

The group centers.

centers = diabetes_lda$means

Compute a unit circle and an affine transformation of the circle into the ellipse we
want to plot.

unitcircle = exp(1i * seq(0, 2*pi, length.out = 90)) %>%

(function(x) cbind(Re(x), Im(x)))

ellipse = unitcircle %*% solve(diabetes_lda$scaling)

All three ellipses, one for each group center.

ellipses = lapply(seq_len(nrow(centers)), function(i) {

(ellipse +

matrix(centers[i, ], byrow = TRUE,

ncol = ncol(centers), nrow = nrow(ellipse))) %>%

cbind(group = i)

}) %>% do.call(rbind, .) %>% data.frame

ellipses$group %<>% factor

Now we are ready to plot (Figure 13.6).

ggdb + geom_raster(aes(fill = ghat),

data = diabetes_grid, alpha = 0.4, interpolate = TRUE) +

geom_point(data = as_data_frame(centers), pch = "+", size = 8) +

geom_path(aes(colour = group), data = ellipses) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0))
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Figure 13.6: As Figure 13.5, with the classification
regions from the LDA model shown.

I Question 13.3.2. Why is the boundary between the prediction regions for groups 1

and 2 not perpendicular to the line between the cluster centers?

I Question 13.3.3. How confident would you be about the predictions in those areas

of the 2D plane that are far from all of the cluster centers?

I Question 13.3.4. Why is the boundary between the prediction regions for groups

2 and 3 not half-way between the centers, but shifted in favor of class 3? (Hint: have a
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look at the prior argument of lda.) Try again with uniform prior.

I Answer 13.3.1. The result of the following code chunk is shown in Figure 13.7.
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Figure 13.7: As Figure 13.6, but with uniform class
priors.

diabetes_up = lda(group ~ insulin + glutest, data = diabetes,

prior = with(diabetes, rep(1/nlevels(group), nlevels(group))))

diabetes_grid$ghup =

predict(diabetes_up, newdata = diabetes_grid)$class

stopifnot(all.equal(diabetes_up$means, diabetes_lda$means))

ellipse_up = unitcircle %*% solve(diabetes_up$scaling)

ellipses_up = lapply(seq_len(nrow(centers)), function(i) {

(ellipse_up +

matrix(centers[i, ], byrow = TRUE,

ncol = ncol(centers), nrow = nrow(ellipse_up))) %>%

cbind(group = i)

}) %>% do.call(rbind, .) %>% data.frame

ellipses_up$group %<>% factor

ggdb + geom_raster(aes(fill = ghup),

data = diabetes_grid, alpha = 0.4, interpolate = TRUE) +

geom_point(data = data.frame(centers), pch = "+", size = 8) +

geom_path(aes(colour = group), data = ellipses_up) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0))

The stopifnot line confirms that the class centers are the same –they are inde-

pendent of the prior–, but the joint covariance is not.

I Question 13.3.5. What is the difference in the prediction accuracy if we use all 5

variables instead of just insulin and glufast?
I Answer 13.3.2.

diabetes_lda5 = lda(group ~ relwt + glufast + glutest +

steady + insulin, data = diabetes)

diabetes_lda5

## Call:

## lda(group ~ relwt + glufast + glutest + steady + insulin, data = diabetes)

##

## Prior probabilities of groups:

## 1 2 3

## 0.2222222 0.2500000 0.5277778

##

## Group means:

## relwt glufast glutest steady insulin

## 1 0.9915625 213.65625 1027.3750 108.8438 320.9375

## 2 1.0558333 99.30556 493.9444 288.0000 208.9722

## 3 0.9372368 91.18421 349.9737 172.6447 114.0000

##

## Coefficients of linear discriminants:

## LD1 LD2
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## relwt -1.339546e+00 -3.7950612048

## glufast 3.301944e-02 0.0373202882

## glutest -1.263978e-02 -0.0068947755

## steady 1.240248e-05 -0.0059924778

## insulin -3.895587e-03 0.0005754322

##

## Proportion of trace:

## LD1 LD2

## 0.8784 0.1216

ghat5 = predict(diabetes_lda5)$class

table(ghat5, diabetes$group)

##

## ghat5 1 2 3

## 1 26 0 0

## 2 5 31 3

## 3 1 5 73

mean(ghat5 != diabetes$group)

## [1] 0.09722222

I Question 13.3.6. Instead of approximating the prediction regions by classifica-

tion from a grid of points, compute the separating lines explicitly from the linear

determinant coefficients.

I Answer 13.3.3. See Section 4.3, Equation (4.10) in (Hastie et al., 2008).

13.3.2 Predicting embryonic cell state from gene expression

Assume that we already know that the four genes FN1, TIMD2, GATA4 and SOX7 are
relevant to the classification task5. We want to build a classifier that predict the 5 Later in this chapter we will see methods that

can drop this assumption and screen all available
features.

developmental time (embryonic days, E3.25, E3.5, E4.5). We load the data and select
four corresponding probes.

library("Hiiragi2013")

data("x")

probes = c("1426642_at","1418765_at","1418864_at","1416564_at")

embryoCells = as_data_frame(t(exprs(x)[probes, ])) %>%

mutate(Embryonic.day = x$Embryonic.day) %>%

filter(x$genotype == "WT")

We can use the Bioconductor annotation package associated with the microarray
to verify that the probes correspond to the intended genes,

annotation(x)

## [1] "mouse4302"

library("mouse4302.db")

anno = AnnotationDbi::select(mouse4302.db, keys = probes,

columns = c("SYMBOL", "GENENAME"))

anno
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## PROBEID SYMBOL

## 1 1426642_at Fn1

## 2 1418765_at Timd2

## 3 1418864_at Gata4

## 4 1416564_at Sox7

## GENENAME

## 1 fibronectin 1

## 2 T cell immunoglobulin and mucin domain containing 2

## 3 GATA binding protein 4

## 4 SRY (sex determining region Y)-box 7

mt = match(anno$PROBEID, colnames(embryoCells))

colnames(embryoCells)[mt] = anno$SYMBOL

and produce a pairs plot (Figure 13.8).

library("GGally")

ggpairs(embryoCells, mapping = aes(col = Embryonic.day),

columns = anno$SYMBOL, upper = list(continuous = "points"))
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Figure 13.8: Expression values of the discrimi-
nating genes, with the prediction target Embry-
onic.day shown by color.

We can now call lda on these data. The linear combinations LD1 and LD2 that
serve as discriminating variables are given in the slot ed_lda$scaling of the output
from lda.

ec_lda = lda(Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells)
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round(ec_lda$scaling, 1)

## LD1 LD2

## Fn1 -0.2 -0.4

## Timd2 0.5 0.0

## Gata4 -0.1 -0.6

## Sox7 -0.7 0.5

For the visualisation of the learned model in Figure 13.9, we need to build the
prediction regions and their boundaries by expanding the grid in the space of the two
new coordinates LD1 and LD2.

ec_rot = predict(ec_lda)$x %>% as_data_frame %>%

mutate(ed = embryoCells$Embryonic.day)

ec_lda2 = lda(ec_rot[, 1:2], predict(ec_lda)$class)

ec_grid = with(ec_rot, expand.grid(

LD1 = make1Dgrid(LD1),

LD2 = make1Dgrid(LD2)))

ec_grid$edhat = predict(ec_lda2, newdata = ec_grid)$class

ggplot() +

geom_point(aes(x = LD1, y = LD2, colour = ed), data = ec_rot) +

geom_raster(aes(x = LD1, y = LD2, fill = edhat),

data = ec_grid, alpha = 0.4, interpolate = TRUE) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0)) +

coord_fixed()

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

−�

−�

�

�

�

�

−��� ��� ���
���

��
�

��
●

●

●

�����
����
����

�����
�����
����
����

Figure 13.9: LDA classification regions for Embry-
onic.day.

I Question 13.3.7. Repeat these analyses using quadratic discriminant analysis

(qda). What difference do you see in the shape of the boundaries?
I Answer 13.3.4. See Figure 13.10.

library("gridExtra")

ec_qda = qda(Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells)

variables = colnames(ec_qda$means)

pairs = combn(variables, 2)

lapply(seq_len(ncol(pairs)), function(i) {

grid = with(embryoCells,

expand.grid(x = make1Dgrid(get(pairs[1, i])),

y = make1Dgrid(get(pairs[2, i])))) %>%

‘colnames<-‘(pairs[, i])

for (v in setdiff(variables, pairs[, i]))

grid[[v]] = median(embryoCells[[v]])

grid$edhat = predict(ec_qda, newdata = grid)$class
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ggplot() + geom_point(

aes_string(x = pairs[1, i], y = pairs[2, i],

colour = "Embryonic.day"), data = embryoCells) +

geom_raster(

aes_string(x = pairs[1, i], y = pairs[2, i], fill = "edhat"),

data = grid, alpha = 0.4, interpolate = TRUE) +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0)) +

coord_fixed() +

if (i != ncol(pairs)) theme(legend.position = "none")

}) %>% grid.arrange(grobs = ., ncol = 3)
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Figure 13.10: QDA for the mouse cell data, all
pairwise plots of the four features.

I Question 13.3.8. What happens if you call lda or qda with a lot more genes, say

the first 1000, in the Hiiragi dataset?
I Answer 13.3.5.

lda(t(exprs(x))[, 1:1000], x$Embryonic.day)

## Warning in lda.default(x, grouping, ...): variables are collinear

qda(t(exprs(x))[, 1:1000], x$Embryonic.day)

## Error in qda.default(x, grouping, ...): some group is too small for

’qda’

13.4 Machine learning vs rote learning

Computers are really good at memorizing facts. In the worst case, a machine learning
algorithm is a roundabout way of doing this6. The central question in statistical learn- 6 The not so roundabout way is database tech-

nologies.ing is whether the algorithm was able to generalize, i. e., interpolate and extrapolate.
Let’s look at the following example. We generate random data (rnorm) for n objects,
with different numbers of features (given by p). We train a LDA on these data and
compute themisclassification rate, i. e., the fraction of times the prediction is wrong
(pred != resp).
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library("dplyr")

p = 2:21

n = 20

mcl = lapply(p, function(k) {

replicate(100, {

xmat = matrix(rnorm(n * k), nrow = n)

resp = sample(c("apple", "orange"), n, replace = TRUE)

fit = lda(xmat[, 1:k], resp)

pred = predict(fit)$class

mean(pred != resp)

}) %>% mean %>% tibble(mcl = .)

}) %>% bind_rows %>% cbind(., p = p)

ggplot(mcl, aes(x = p, y = mcl)) + geom_line() + geom_point() +

ylab("Misclassification rate")
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Figure 13.11: Misclassification rate of LDA applied
to random data. With increasing number of
features (p), the misclassification rate becomes
almost zero as p approaches n, the number
of objects. (As p becomes even larger, the
"performance" degrades again, apparently due to
numerical properties of the lda implementation
used here.)

I Question 13.4.1. What is the purpose of the replicate loop in the above code?

What happens if you omit it (or replace the 100 by 1)?

I Answer 13.4.1. Averaging the misclassification rate over 100 replicates makes the

estimate more stable, and since we are working with simulated data, we are at liberty

to do so. For each single replicate, the curve is a noisier version of Figure 13.11.

Figure 13.11 seems to imply that we can perfectly predict random labels from

random data, if we only fit a complex enough model, i.e., one with many parameters.

How can we overcome such an absurd conclusion? The problem with the above code

is that the model performance is evaluated on the same data on which it was trained.

This generally leads to positive bias, as you see in this crass example. How can we

overcome this problem? The key idea is to assess model performance on different data

than those on which the model was trained.

13.4.1 Cross-validation

A naive approach might be to split the data in two halves, and use the first half for
learning (“training”), the second half for assessment (“testing”). It turns out that this
is needlessly variable and needlessly inefficient. Needlessly variable, since by splitting
the data only once, our results can be quite affected by how the splitting happens
to fall. It seems better to do the splitting many times, and average. This will give us
more stable results. Needlessly inefficient, since the performance of machine learning
algorithms depends on the number of samples, and the performance measured on
half the data is likely7 to be worse than what it is with all the data. For this reason, 7 Unless we have such an excess of data that it

doesn’t matter.it is better to use unequal sizes of training and test data. In the extreme case, we’ll
use as much as n − 1 samples for training, and the remaining one for testing. After
we’ve done this likewise for all samples, we can average our performance metric. This
is called leave-one-out cross-validation. An alternative is k-fold cross-validation,
where the samples are repeatedly split into a training set of size of around n(k −
1)/k and a test set of size of around n/k . Both alternatives have pros and contras,
and there is not a universally best choice. An advantage of leave-one-out is that
the amount of data used for training is close to the maximally available data; this is
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especially important if the sample size is limiting and “every little matters” for the
algorithm. A drawback of leave-one-out is that the training sets are all very similar,
so they may not sufficiently model the kind of sampling changes to be expected if a
new dataset came along. For large n, leave-one-out cross-validation can be needlessly
time-consuming8. 8 See ChapterModel Assessment and Selection in the

book by Hastie et al. (2008) for further discussion
on these trade-offs.

estimate_mcl_loocv = function(x, resp) {

vapply(seq_len(nrow(x)), function(i) {

fit = lda(x[-i, ], resp[-i])

ptrn = predict(fit, newdata = x[-i,, drop = FALSE])$class

ptst = predict(fit, newdata = x[ i,, drop = FALSE])$class

c(train = mean(ptrn != resp[-i]), test = (ptst != resp[i]))

}, FUN.VALUE = c(0,0)) %>% rowMeans %>% t %>% as_data_frame

}

xmat = matrix(rnorm(n * last(p)), nrow = n)

resp = sample(c("apple", "orange"), n, replace = TRUE)

mcl = lapply(p, function(k) {

estimate_mcl_loocv(xmat[, 1:k], resp)

}) %>% bind_rows %>% data.frame(p) %>% melt(id.var = "p")

ggplot(mcl, aes(x = p, y = value, col = variable)) + geom_line() +

geom_point() + ylab("Misclassification rate")

The result is show in Figure 13.12.
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Figure 13.12: Cross-validation: the misclassifica-
tion rate of LDA applied to random data, when
evaluated on test data that were not used for
learning, hovers around 0.5 independent of p.
The misclassification rate on the training data is
also shown. It behaves similar to what we already
saw in Figure 13.11.

I Question 13.4.2. Why are the curves in Figure 13.12 more variable (“wiggly”) than

in Figure 13.11? How can you overcome this?

I Answer 13.4.2. Only one dataset (xmat, resp) was used to calculate Figure 13.12,

whereas for Figure 13.11, we had the data generated within a replicate loop. You

could similarly extend the above code to average the misclassification rate curves over

many replicate datasets.

13.4.2 The curse of dimensionality
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Figure 13.13: As we increase the number of fea-
tures included in the model, the misclassification
rate initially improves; as we start including more
and more irrelevant features, it increases again,
as we are fitting noise.

In Section 13.4.1 we have seen overfitting and cross-validation on random data, but
how does it look if there is in fact a relevant class separation?

p = 2:20

mcl = replicate(100, {

xmat = matrix(rnorm(n * last(p)), nrow = n)

resp = sample(c("apple", "orange"), n, replace = TRUE)

xmat[, 1:6] = xmat[, 1:6] + as.integer(factor(resp))

lapply(p, function(k) {

estimate_mcl_loocv(xmat[, 1:k], resp)

}) %>% bind_rows %>% cbind(p = p) %>% melt(id.var = "p")

}, simplify = FALSE)

mcl = bind_rows(mcl) %>% group_by(p, variable) %>%
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summarise(value = mean(value))

ggplot(mcl, aes(x = p, y = value, col = variable)) + geom_line() +

geom_point() + ylab("Misclassification rate")

Figure 13.14: Idealized version of Figure 13.13,
from Hastie et al. (2008). A recurrent goal in
machine learning is finding the sweet spot in the
variance–bias trade-off.

The result is shown in Figure 13.13. The group centers are the vectors (inR
20)

given by the coordinates (1, 1, 1, 1, 1, 1, 0, 0, 0, . . .) (apples) and (2, 2, 2, 2, 2, 2, 0, 0, 0, . . .)

(oranges), and the optimal decision boundary is the hyperplane orthogonal to the line

between them. For k smaller than 6, the decision rule cannot reach this hyperplane –

it is biased. As a result, the misclassification rate is suboptimal, and it decreases with

k . But what happens for k larger than 6? The algorithm is, in principle, able to model

the optimal hyperplane, and it should not be distracted by the additional features.

The problem is that it is. The more additional features enter the dataset, the higher

the probability that one or more of them happen to fall in a way that they look like

good, discriminating features in the training data – only to mislead the classifier and

degrade its performance in the test data. Shortly we’ll see how to use penalization to

(try to) control this problem.

The term curse of dimensionality was coined by Bellman (1961). It refers to

the fact that high-dimensional spaces are very hard to sample. Our intuitions about

distances between points in a high-dimensionsal space, and the relationship between

its volume and surface, break down.

I Question 13.4.3. Assume you have a dataset with 1 000 000 data points in p dimen-

sions. The data are uniformly distributed in the unit hybercube (i. e., all features lie

in the interval [0, 1]). What’s the side length of a hybercube that can be expected to

contain 10 points, as a function of p?
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Figure 13.15: Side length of a hybercube expected
to contain 10 points out of 1 million uniformly
distributed ones, as a function of its dimension p .
While for p = 1, this length is 10/106 = 10−5, for
larger p it approaches 1, i. e., becomes the same
as the range of each the features. In genomics, we
often aim to fit models to data with thousands of
features.

I Answer 13.4.3. See Figure 13.15.

sideLength = function(p, pointDensity = 1e6, pointsNeeded = 10)

(pointsNeeded / pointDensity) ^ (1 / p)

ggplot(tibble(p = 1:750, sideLength = sideLength(p)),

aes(x = p, y = sideLength)) +

geom_line(col = "red") + geom_hline(aes(yintercept = 1), linetype = 2)

Generally, prediction at the boundaries of feature space is more difficult than in its

interior, as it tends to involve extrapolation, rather than interpolation.

I Question 13.4.4. What fraction of a unit cube’s total volume is closer than 0.01 to

any of its surfaces, as a function of the dimension?
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Figure 13.16: Fraction of a unit cube’s total
volume that is in its “shell” (here operationalised
as those points that are closer than 0.01 to its
surface) as a function of the dimension p .

I Answer 13.4.4. See Figure 13.16.

p = 1:750

volOuterCube = 1 ^ p

volInnerCube = 0.98 ^ p

ggplot(tibble(p = p, ‘V(shell)‘ = volOuterCube - volInnerCube),

aes(x = p, y =‘V(shell)‘)) + geom_line(col = "blue")

I Question 13.4.5. What is the coefficient of variation (ratio of standard deviation

over average) of the distance between two randomly picked points in the unit hyper-

cube, as a function of the dimension?
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I Answer 13.4.5. We solve this one by simulation. We generate n pairs of random
points in the hypercube (x1, x2) and compute their Euclidean distances. See Fig-
ure 13.17. This result can also be predicted from the central limit theorem.

n = 1000

df = tibble(

p = round(10 ^ seq(0, 4, by = 0.25)),

cv = vapply(p, function(k) {

x1 = matrix(runif(k * n), nrow = n)

x2 = matrix(runif(k * n), nrow = n)

d = sqrt(rowSums((x1 - x2)^2))

sd(d) / mean(d)

}, FUN.VALUE = NA_real_))

ggplot(df, aes(x = log10(p), y = cv)) + geom_line(col = "orange") +

geom_point()

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●���

���

���

���

� � � � �
��������

��

Figure 13.17: Coefficient of variation (CV) of the
distance between randomly picked points in the
unit hypercube, as a function of the dimension.
As the dimension increases, everybody is equally
far away from everyone else: there is almost no
variation in the distances any more.13.5 Objective functions

We’ve already seen themisclassification rate (MCR) used to assess our classification

performance in Figures 13.11–13.13. Its population version is defined as

MCR = E
⇥

ŷ,y

⇤

, (13.1)

and for a finite sample

MMCR =
1

n

nX

i=1
ŷi,yi . (13.2)

This is not the only choice we could make. Perhaps we care more about the misclas-
sification of apples as oranges than vice versa, and we can reflect this by introducing
weights that depend on the type of error made into the sum of Equation (13.2) (or
the integral of Equation (13.1)). This can get even more elaborate if we have more
than two classes. Often we do not only want to see a single numeric summary, but the
whole confusion table, which in R we can get via expressions like

table(truth, response)

An important special case is binary classification with asymmetric costs – think

about, say, a medical test. Here, the sensitivity (a.k.a. true positive rate or recall) is

related to the misclassification of non-sick as sick, and the specificity (or true neg-

ative rate) depends on the probability of misclassification of sick as non-sick. Often,

there is a single parameter (e. g., a threshold) that can be moved up and down, allow-

ing a trade-off between sensitivity and specificity (and thus, equivalently, between the

two types of misclassification). In those cases, we usually are not content to know the

classifier performance at one single choice of threshold, but at many (or all) of them.

This leads to receiver operating characteristic (ROC) or precision-recall curves.

I Question 13.5.1. What are the exact relationships between the per-class misclassi-

fication rates and sensitivity and specificity?
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I Answer 13.5.1. The sensitivity or true positive rate is

TPR =
TP

P
,

where TP is the number of true positives and P the number of all positives. The speci-

ficity or true negative rate is

SPC =
TN

N
,

where TN is the number of true negatives and N the number of all negatives. See also

https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Another cost function can be computed from the Jaccard index, which we already

saw in Chapter 5.

J (A,B) =
|A\ B |

|A[ B |
, (13.3)

whereA is the set of samples for which the true class is 1 (A = {i |yi = 1}) and B

is the set of samples for which the predicted class is 1. J is a number between 0 and

1, and a high value of J indicates high overlap of the two sets. Note that J does not

depend on the number of samples for which both true and predicted class is 0 – so it is

particularly suitable for measuring the performance of methods that try to find rare

events.

We can also consider probabilistic class predictions, which come in the form

P̂(Y |X ). In this case, a possible risk function would be obtained by looking at dis-

tances between the true probability distribution and the estimated probability distri-

butions. For two classes, the finite sample version of the log loss is

log loss = −
1

n

nX

i=1

yi log(p̂i ) + (1 −yi ) log(1 − p̂i ), (13.4)

where p̂i 2 [0, 1] is the prediction, andyi 2 {0, 1} is the truth9. 9 Note that the log loss will be infinite if a predic-
tion is totally confident (p̂i is exactly 0 or 1) but
wrong.For continuous continuous response variables (regression), a natural choice is the

mean squared error (MSE). It is the average squared error,

MMSE =
1

n

nX

i=1

(Ŷi −Yi )
2. (13.5)

The population version is defined analogously, by turning the summation into an

integral as in Equations (13.1) and (13.2).

Statisticians call functions like Equations (13.1–13.5) variously (and depending on

context and predisposition) risk function, cost function, objective function10. 10 There is even an R package dedicated to
evaluation of statistical learners called metrics.
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13.6 Variance–bias trade-off

Figure 13.18: In the upper bull’s eye, the estimates
are systematically off target, but in a quite
reproducible manner. The green segment
represents the bias. In the lower bull’s eye, the
estimates are not biased, as they are centered in
the right place, however they have high variance.
We can distinguish the two scenarios since we see
the result from many shots. If we only had one
shot and missed the bull’s eye, we could not easily
know whether that’s because of bias or variance.

An important fact that helps us understand the tradeoffs when picking a statistical

learning model is that the MSE is the sum of two terms, and often the choices we can

make are such that one of those terms goes down while the other one goes up. The

bias measures how different the average of all the different estimates is from the

truth, and variance, how much an individual one might scatter from the average value

(Figure 13.18). In applications, we often only get one shot, therefore being reliably

almost on target can beat being right on the long term average but really off today.

The decomposition

MSE = Var(Ŷ )
| {z }
variance

+E[Ŷ −Y ]2
|      {z      }

bias

(13.6)

follows by straightforward algebra.

When trying to minimize the MSE, it is important to remember that sometimes we

can pay the price of some bias to obtain a much smaller variance and thus an over-

all estimator of lower MSE. In classification (with categorical response variables),

different objective functions than the MSE are used, and there is usually no such

straightforward decomposition as in Equation (13.6). In general, we can go much fur-

ther in classification applications than in regression with trading biases for variance,

since the discreteness of the response neutralizes certain biases (Friedman, 1997).

13.6.1 Penalization

In high-dimensional statistics, we are constantly plagued by variance: there is just

not enough data to fit all the possible parameters. One of the most fruitful ideas in

high-dimensional statistics is penalization: a tool to actively control and exploit the

variance-bias tradeoff.

Although generalisation of LDA to high-dimensional settings is possible (Clem-

mensen et al., 2011; Witten and Tibshirani, 2011), it turns out that logistic regression

is a more general approach11, and therefore we’ll now switch to that, using the glmnet 11 It fits into the framework of generalized linear
models.package.

Multinomial12 logistic regression models the posterior log-odds between k classes 12 Or, for the special case of two classes, binomial
logistic regression.and can be written in the form13
13 See (Hastie et al., 2008) for a complete presenta-
tion.

log
P(Y = i |X = x)

P(Y = k |X = x)
= β0i + βix , (13.7)

where i = 1, . . . ,k − 1; x is the n ⇥ p data matrix (n: number of samples, p: number

of features), and βi is a p-dimensional vector that determines how the classifica-

tion odds for class i versus class k depend on x . The numbers β0i are intercepts and

depend, among other things, on the classes’ prior probabilities. Instead of the log

odds (13.7) (i. e., ratios of class probabilities), we can also write down an equivalent

model for the class probabilities themselves, and the fact that we here used the k-th
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class as a reference is an arbitrary choice, as the model estimates are equivariant un-

der this choice (Hastie et al., 2008). The model is fit by maximising the log-likelihood

l(β , β0;x), where β = (β1, . . . , βk−1) and analogously for β0.

So far, so good. But as p gets larger, there is an increasing chance that some of

the estimates go wildly off the mark, due to random sampling happenstances in the

data. This is true even if for each individual coordinate of the vector βi , the error

distribution is bounded: the probabilty of there being one coordinate that is in the far

tails increases the more coordiates there are, i.e., the larger p is.

A related problem can also occur, not in (13.7), but in other, non-linear mod-

els, as the model dimension p increases while the sample size n remains the same:

the likelihood landscape around its maximum becomes increasingly flat, and the

maximum-likelihood estimate of the model parameters becomes more and more

variable. Eventually, the maximum is no longer a point, but a submanifold, and the

maximum likelihood estimate is unidentifiable.

Both of these limitations can be overcome with a modification of the objective:

instead of maximising the bare log-likelihood, we maximise a penalized version of it,

β̂ = argmax
β

l(β , β0;x) + λ pen(β), (13.8)

where λ ≥ 0 is a real number, and pen is a convex function, called the penalty

function. Popular choices are pen(β) = |β |2 (ridge regression) and pen(β) = |β |1

(lasso)14. In the elastic net, ridge and lasso are hybridized by using the penalty 14 Here, |β |ν =
P

i β
ν

i
is the Lν -norm of the

vector β . Variations are possible, for instead
we could include in this summation only some
but not all of the elements of β ; or we could
scale different elements differently, for instance
based on some prior belief of their scale and
importance.

function pen(β) = (1 − α)|β |1 + α |β |2 with some further parameter α 2 [0, 1]. The

crux is, of course, how to choose the right λ, and we will discuss that in the following.

13.6.2 Example: predicting colon cancer from stool microbiome com-

position

Zeller et al. (2014) studied metagenome sequencing data from fecal samples of 156
humans that included colorectal cancer patients and tumor-free controls. Their
aim was to see whether they could identify biomarkers (presence or abundance of
certain taxa) that could help with early tumor detection. The data are available from
Bioconductor through its ExperimentHub service under the identifier EH359.

library("ExperimentHub")

eh = ExperimentHub()

zeller = eh[["EH361"]]

zeller$disease %>% table

## .

## cancer large_adenoma n small_adenoma

## 53 15 61 27

I Question 13.6.1. Explore the eh object to see what other datasets there are.
I Answer 13.6.1.
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eh

For the following, let’s focus on the normal and cancer samples and set the adeno-
mas aside.

zellerNC = zeller[, zeller$disease %in% c("n", "cancer")]

Before jumping into model fitting, it is always a good idea to do some exploration
of the data. First, let’s look at the sample annotations for some of the samples. We
pick them randomly, since this can be more representative of the whole dataset than
only looking at the first or last ones.

pData(zellerNC)[ sample(ncol(zellerNC), 3), ]

## subjectID age gender bmi country disease

## CCIS71578391ST-4-0 FR-187 70 male 25 france n

## CCIS50003399ST-4-0 FR-194 66 female 28 france n

## CCIS38765456ST-20-0 FR-723 79 female 22 france cancer

## tnm_stage ajcc_stage localization fobt

## CCIS71578391ST-4-0 <NA> <NA> <NA> negative

## CCIS50003399ST-4-0 <NA> <NA> <NA> negative

## CCIS38765456ST-20-0 t4n1m1 iv lc positive

## wif-1_gene_methylation_test group bodysite

## CCIS71578391ST-4-0 negative control stool

## CCIS50003399ST-4-0 negative control stool

## CCIS38765456ST-20-0 positive crc stool

## ethnicity number_reads

## CCIS71578391ST-4-0 white 74021867

## CCIS50003399ST-4-0 white 63416533

## CCIS38765456ST-20-0 white 81682982

Next, let’s explore the feature names15. 15We define the helper function formatfn to
line wrap these long character strings for the
available space here.

formatfn = function(x)

gsub("|", "| ", x, fixed = TRUE) %>% lapply(strwrap)

rownames(zellerNC)[1:4]

## [1] "k__Bacteria" "k__Viruses"

## [3] "k__Bacteria|p__Firmicutes" "k__Bacteria|p__Bacteroidetes"

rownames(zellerNC)[nrow(zellerNC) + (-2:0)] %>% formatfn

## [[1]]

## [1] "k__Bacteria| p__Proteobacteria| c__Deltaproteobacteria|"

## [2] "o__Desulfovibrionales| f__Desulfovibrionaceae|"

## [3] "g__Desulfovibrio| s__Desulfovibrio_termitidis"

##

## [[2]]

## [1] "k__Viruses| p__Viruses_noname| c__Viruses_noname|"

## [2] "o__Viruses_noname| f__Baculoviridae| g__Alphabaculovirus|"

## [3] "s__Bombyx_mori_nucleopolyhedrovirus|"

## [4] "t__Bombyx_mori_nucleopolyhedrovirus_unclassified"

##

## [[3]]
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## [1] "k__Bacteria| p__Proteobacteria| c__Deltaproteobacteria|"

## [2] "o__Desulfovibrionales| f__Desulfovibrionaceae|"

## [3] "g__Desulfovibrio| s__Desulfovibrio_termitidis|"

## [4] "t__GCF_000504305"

As you can see, the features are a mixture of abundance quantifications at different
taxonomic levels, from kingdom over phylum to species. We could select only some
of these, but here we continue with all of them. Next, let’s look at the distribution of
some of the features. Here, we show two; in practice, it is helpful to scroll through
many such plots quickly to get an impression.

ggplot(melt(exprs(zellerNC)[c(510, 527), ]), aes(x = value)) +

geom_histogram(bins = 25) +

facet_wrap( ~ Var1, ncol = 1, scales = "free")
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Figure 13.19: Histograms of the distributions for
two randomly selected features. The distributions
are highly skewed, with many zero values and a
thin, long tail of non-zero values.

In the simplest case, we fit model (13.7) as follows.

library("glmnet")

glmfit = glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")

A remarkable feature of the glmnet function is that it fits (13.7) not only for
one choice of λ, but for all possible λs at once. For now, let’s look at the prediction
performance for, say, λ = 0.04. The name of the function parameter is s:

predTrsf = predict(glmfit, newx = t(exprs(zellerNC)),

type = "class", s = 0.04)

table(predTrsf, zellerNC$disease)

##

## predTrsf cancer n

## cancer 51 0

## n 2 61

Not bad16. Let’s have a closer look at glmfit. The glmnet package offers a a diag- 16 But remember that this is on the training data,
without cross-validation.nostic plot that is worth looking at (Figure 13.20).

plot(glmfit, col = brewer.pal(12, "Set3"), lwd = sqrt(3))
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Figure 13.20: Regularization paths for glmfit.

I Question 13.6.2. What is the x-axis in Figure 13.20? What are the different lines?

I Answer 13.6.2. Consult the manual page of the function plot.glmnet in the

glmnet package.

Let’s get back to the question of how to choose the parameter λ. We could try
many different choices –and indeed, all possible choices– of λ, assess classification
performance in each case using cross-validation, and then choose the best λ17. We

17 You’ll already realize from the description of
this strategy that if we optimize λ in this way,
the resulting apparent classification performance
will likely be exaggerated. We need a truly
independent dataset, or at least another, outer
cross-validation loop to get a more realistic
impression of the generalizability. We will get
back to this question at the end of the chapter.

could do so by writing a loop as we did in the estimate_mcl_loocv function in
Section 13.4.1. It turns out that the glmnet package already has built-in functionality
for that, with the function cv.glmnet, which we can use instead.

cvglmfit = cv.glmnet(x = t(exprs(zellerNC)),

y = factor(zellerNC$disease),

family = "binomial")

plot(cvglmfit)
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The diagnostic plot is shown in Figure 13.21. We can access the optimal value with

cvglmfit$lambda.min

## [1] 0.08830775

As this value results from finding a minimum in an estimated curve, it turns out

that it is often too small, i. e., that the implied penalization is too weak. A heuristic

recommended by the authors of the glmnet package is to use a somewhat larger value

instead, namely the largest value of λ such that the performance measure is within 1

standard error of the minimum.
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Figure 13.21: Diagnostic plot for cv.glmnet:
shown is a measure of cross-validated prediction
performance, the deviance, as a function of λ.
The dashed vertical lines show lambda.min and
lambda.1se.

cvglmfit$lambda.1se

## [1] 0.1015325

I Question 13.6.3. How does the confusion table look like for λ = lambda.1se?
I Answer 13.6.3.

s0 = cvglmfit$lambda.1se

predict(glmfit, newx = t(exprs(zellerNC)),type = "class", s = s0) %>%

table(zellerNC$disease)

##

## . cancer n

## cancer 35 7

## n 18 54

I Question 13.6.4. What features drive the classification?
I Answer 13.6.4.

coefs = coef(glmfit)[, which.min(abs(glmfit$lambda - s0))]

topthree = order(abs(coefs), decreasing = TRUE)[1:3]

as.vector(coefs[topthree])

## [1] -28.629194 -4.486355 -1.095961

formatfn(names(coefs)[topthree])

## [[1]]

## [1] "k__Bacteria| p__Candidatus_Saccharibacteria|"

## [2] "c__Candidatus_Saccharibacteria_noname|"

## [3] "o__Candidatus_Saccharibacteria_noname|"

## [4] "f__Candidatus_Saccharibacteria_noname|"

## [5] "g__Candidatus_Saccharibacteria_noname|"

## [6] "s__candidate_division_TM7_single_cell_isolate_TM7b"

##

## [[2]]

## [1] "k__Bacteria| p__Firmicutes| c__Clostridia| o__Clostridiales|"

## [2] "f__Ruminococcaceae| g__Subdoligranulum|"

## [3] "s__Subdoligranulum_variabile"

##

## [[3]]

## [1] "k__Bacteria| p__Firmicutes| c__Clostridia| o__Clostridiales|"

## [2] "f__Lachnospiraceae| g__Lachnospiraceae_noname|"

## [3] "s__Lachnospiraceae_bacterium_7_1_58FAA"



356 ����

I Question 13.6.5. How do the results change if we transform the data, say, with the

asinh transformation as we saw in Chapter 5?
I Answer 13.6.5. See Figure 13.22.

cv.glmnet(x = t(asinh(exprs(zellerNC))),

y = factor(zellerNC$disease),

family = "binomial") %>% plot
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Figure 13.22: like Figure 13.21, but using an asinh
transformation of the data.

I Question 13.6.6. Would a good classification performance on these data mean that

this assay is ready for screening and early cancer detection?

I Answer 13.6.6. No. The performance here is measured on a set of samples in

which the cases have similar prevalence as the controls. This serves well enough to

explore the biology. However, in a real-life application, the cases will be much less

frequent. To be practically useful, the assay must have a much higher specificity, i. e.,

not wrongly diagnose disease where there is none. To establish specificity, a much

larger set of normal samples need to be tested.

13.6.3 Example: classifying mouse cells from their expression profiles

Figures 13.21 and 13.22 are textbook examples of how we expect the dependence of
(cross-validated) classification performance versus model complexity (λ) to look.
Now let’s get back to the mouse embryo cells data. We’ll try to classify the cells from
embryonic day E3.25 with respect to their genotype.

sx = x[, x$Embryonic.day == "E3.25"]

embryoCellsClassifier = cv.glmnet(t(exprs(sx)), sx$genotype,

family = "binomial", type.measure = "class")

plot(embryoCellsClassifier)

−� −� −� −� −�

��
��

��
��

��
��

��
��

�����������

�
���
���

���
���

���
��
��
��
� ●●●

●●●●

●

●

●

●

●●●

●●●●●

●

●

●●●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

�� �� �� �� �� �� �� �

Figure 13.23: Cross-validated misclassification
error versus penalty parameter for the mouse
cells data.

In Figure 13.23 we see that the misclassification error is (essentially) monotonously

increasing with λ, and is smallest for λ ! 0, i. e., if we apply no penalization at all.

I Question 13.6.7. What is going on with these data?
I Answer 13.6.7. It looks that inclusion of more, and even of all features, does not
harm the classification performance. In a way, these data are “too easy”. Let’s do a
t-test for all features:

mouse_de = rowttests(sx, "genotype")

ggplot(mouse_de, aes(x = p.value)) +

geom_histogram(boundary = 0, breaks = seq(0, 1, by = 0.01))

The result, shown in Figure 13.24, shows that large number of genes are differen-
tially expressed, and thus informative for the class distinction. We can also compute
the pairwise distances between all samples, using all features.

dists = as.matrix(dist(scale(t(exprs(x)))))

diag(dists) = +Inf
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Figure 13.24: Histogram of p-values for the per-
feature t -tests between genotypes in the E3.25
samples.

and then for each sample determine the class of its nearest neighbor

nn = sapply(seq_len(ncol(dists)), function(i) which.min(dists[, i]))

table(x$sampleGroup, x$sampleGroup[nn]) %>% ‘colnames<-‘(NULL)
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##

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## E3.25 33 0 0 0 3 0 0 0

## E3.25 (FGF4-KO) 1 15 0 1 0 0 0 0

## E3.5 (EPI) 2 0 3 0 6 0 0 0

## E3.5 (FGF4-KO) 0 0 0 8 0 0 0 0

## E3.5 (PE) 0 0 0 0 11 0 0 0

## E4.5 (EPI) 0 0 0 0 2 2 0 0

## E4.5 (FGF4-KO) 1 0 0 0 0 0 9 0

## E4.5 (PE) 0 0 0 0 2 0 0 2

Using all features, the nearest neighbour classifier is correct in almost all cases,

including for the E3.25 wildtype vs FGF4-KO distinction. This means that for these

data, there is no apparent benefit in regularisation or feature selection. Limitations of

using all features might become apparent with truly new data, but that is out of reach

for cross-validation.

13.7 A large choice of methods

We have now seen three classification methods: linear discriminant analysis (lda),

quadratic discriminant analysis (qda) and the elastic net (glmnet). In fact, there

are hundreds of different learning algorithms18 available in R and its add-on pack- 18 For an introduction to the subject that uses R
and provides many examples and exercises, we
recommend (James et al., 2013).

ages. You can get an overview in the CRAN task view Machine Learning & Statistical

Learning. Some examples are:

• Support vector machines: the function svm in the package e1071; ksvm in kernlab

• Tree based methods in the packages rpart, tree, randomForest

• Boosting methods: the functions glmboost and gamboost in package mboost

• PenalizedLDA in the package PenalizedLDA, dudi.discr and dist.pcaiv in

ade4).

The complexity and heterogeneity of choices of learning strategies, tuning parame-

ters and evaluation criteria in each of these packages can be confusing. You will al-

ready have noted differences in the interfaces of the lda, qda and glmnet functions,

i. e., in how they expect their input data to presented and what they return. There is

even greater diversity across all the other packages and functions. At the same time,

there are common tasks such as cross-validation, parameter tuning and performance

assessment that are more or less the same no matter what specific method is used.

As you have seen, e. g., in our estimate_mcl_loocv function, the looping and data

shuffling involved leads to rather verbose code.

So what to do if you want to try out and explore different learning algorithms?
Fortunately, there are several projects that provide unified interfaces to the large
number of different machine learning interfaces in R, and also try to provide “best
practice” implementations of the common tasks such as parameter tuning and per-
formance assessment. The two most well-known ones are the packages caret and mlr.
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Here were have a look at caret. You can get a list of supported methods through its
getModelInfo function. There are quite a few, here we just show the first 8.

library("caret")

caretMethods = names(getModelInfo())

head(caretMethods, 8)

## [1] "ada" "AdaBag" "AdaBoost.M1" "adaboost"

## [5] "amdai" "ANFIS" "avNNet" "awnb"

length(caretMethods)

## [1] 232

We will check out a neural network method, the nnet function from the epony-
mous package. The parameter slot informs us on the the available tuning parame-
ters19. 19 They are described in the manual of the nnet

function.
getModelInfo("nnet", regex = FALSE)[[1]]$parameter

## parameter class label

## 1 size numeric #Hidden Units

## 2 decay numeric Weight Decay

Let’s try it out.

trnCtrl = trainControl(

method = "repeatedcv",

repeats = 3,

classProbs = TRUE)

tuneGrid = expand.grid(

size = c(2, 4, 8),

decay = c(0, 1e-2, 1e-1))

nnfit = train(

Embryonic.day ~ Fn1 + Timd2 + Gata4 + Sox7,

data = embryoCells,

method = "nnet",

tuneGrid = tuneGrid,

trControl = trnCtrl,

metric = "Accuracy")
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Figure 13.25: Parameter tuning of the neural net
by cross-validation.

That’s quite a mouthful, but the nice thing is that this syntax is standardized and

applies across many different methods. All you need to do specify the name of the

method and the grid of tuning parameters that should be explored via the tuneGrid

argument.

Now we can have a look at the output (Figure 13.25).

nnfit

## Neural Network

##

## 66 samples

## 4 predictor
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## 3 classes: ’E3.25’, ’E3.5’, ’E4.5’

##

## No pre-processing

## Resampling: Cross-Validated (10 fold, repeated 3 times)

## Summary of sample sizes: 59, 59, 59, 59, 60, 60, ...

## Resampling results across tuning parameters:

##

## size decay Accuracy Kappa

## 2 0.00 0.7158333 0.4270723

## 2 0.01 0.7622619 0.5710980

## 2 0.10 0.7726984 0.5926065

## 4 0.00 0.7455952 0.5284067

## 4 0.01 0.7633730 0.5902138

## 4 0.10 0.7726984 0.5919238

## 8 0.00 0.7813095 0.6169179

## 8 0.01 0.7911508 0.6257162

## 8 0.10 0.7563095 0.5595771

##

## Accuracy was used to select the optimal model using the

## largest value.

## The final values used for the model were size = 8 and decay = 0.01.

plot(nnfit)

predict(nnfit) %>% head(10)

## [1] E3.25 E3.25 E3.25 E3.25 E3.25 E3.25 E3.25 E3.25 E3.25 E3.25

## Levels: E3.25 E3.5 E4.5

I Question 13.7.1. Will the accuracy that we obtained above for the optimal tuning

parameters generalize to a new dataset? What could you do to address that?

I Answer 13.7.1. No, it is likely to be too optimistic, as we have picked the opti-

mum. To get a somewhat more realistic estimate of prediction performance when

generalized, we could formalize (into computer code) all our data preprocessing

choices and the above parameter tuning procedure, and embed this in another, outer

cross-validation loop (Ambroise and McLachlan, 2002). However, this is likely still not

enough, as we discuss in the next section.

13.7.1 Method hacking

In Chapter 6 we encountered p-value hacking. A similar phenomenon exists in statis-

tical learning: given a dataset, we explore various different methods of preprocessing

(such as normalization, outlier detection, transformation, feature selection), try out

different machine learning algorithms and tune their parameters until we are content

with the result. The measured accuracy is likely to be too optimistic, i. e., will not gen-

eralize to a new dataset. Embedding as many of our methodical choices into a com-

putational formalism and having an outer cross-validation loop (not to be confused

with the inner loop that does the parameter tuning) will ameliorate the problem. But

is unlikely to address it completely, since not all our choices can be formalized.
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The gold standard remains validation on truly unseen data. In addition, it is never

a bad thing if the classifier is not a black box but can be interpreted in terms of do-

main knowledge. Finally, report not just summary statistics, such as misclassification

rates, but lay open the complete computational workflow, so that anyone (including

your future self) can convince themselves of the robustness of the result or of the

influence of the preprocessing, model selection and tuning choices (Holmes, 2016).

Exercises

I Exercise 13.1. Apply a kernel support vector machine, available in the kernlab

package, to the zellermicrobiome data. What kernel function is best?

I Exercise 13.2. It has been quipped that all classification methods are just refine-

ments of two archetypal ideas: discriminant analysis and k nearest neighbors. In what

sense might that be a useful classification?

I Answer 13.1. In linear discriminant analysis, we consider our objects as elements

ofR
p , and the learning task is to define regions in this space, or boundary hyper-

planes between them, which we use to predict the class membership of new objects.

This is archetypal for classification by partition. Generalizations of linear discrimi-

nant analysis permit more general spaces and more general boundary shapes.

In k nearest neighbors, no embedding into a coordinate space is needed, but in-

stead we require a distance (or dissimilarity) measure that can be computed between

each pair of objects, and the classification decision for a new object depends on its

distances to the training objects and their classes. This is archetypal for kernel-based

methods.

I Exercise 13.3. Use glmnet for a prediction of a continous variable, i.e., for regres-

sion. Explore the effects of using ridge versus lasso penalty.

I Answer 13.2. There are infinitely many possibilities here. For instance, you could

explore the prostate cancer data as in Chapter 3 of (Hastie et al., 2008); the data are

available in the CRAN package ElemStatLearn.

I Exercise 13.4. Consider smoothing as a regression and model selection problem.

What is the equivalent quantity to the penalization parameter λ in Equation (13.8)?

How do you choose it?

I Answer 13.3. We refer to Chapter 5 of (Hastie et al., 2008)

I Exercise 13.5. Scale invariance. Consider a rescaling of one of the features in the

(generalized) linear model (13.7). For instance, denote the ν -th column of x by x ·ν ,

and suppose that p ≥ 2 and that we rescale x ·ν 7! s x ·ν with some number s , 0.

What will happen to the estimate β̂ from Equation (13.8) in (a) the unpenalized case

(λ = 0) and (b) the penalized case (λ > 0)?

I Answer 13.4. In the unpenalized case, the estimates will be scaled by 1/s , so that

the resulting model is, in effect, the same. In the penalized case, the penalty from

the ν -th component of β will be different. If |s | > 1, the amplitude of the feature is

increased, smaller β-components are required for it to have the same effect in the

prediction, and therefore the feature is more likely to receive a non-zero and/or
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larger estimate, possibly on the cost of the other features; conversely for |s | < 1.
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