Calculation of the cost matrix

Wolfgang Huber

October 14, 2013

1 Problem statement and definitions

Let y_{nj} be the data value at position (genomic coordinate) n = 1, ..., N for replicate array j = 1, ..., J. Hence we have J arrays and sequences of length N. The goal of this note is to describe an O(NJ) algorithm to calculate the cost matrix of a piecewise linear model for the segmentation of the (1, ..., N) axis. It is implemented in the function costMatrix in the package tilingArray. The cost matrix is the input for a dynamic programming algorithm that finds the optimal (least squares) segmentation.

The cost matrix G_{km} is the sum of squared residuals for a segment from m to m + k - 1 (i. e. including m + k - 1 but excluding m + k),

$$G_{km} := \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} (y_{nj} - \hat{\mu}_{km})^2$$
 (1)

where $1 \leq m \leq m+k-1 \leq N$ and $\hat{\mu}_{km}$ is the mean of that segment,

$$\hat{\mu}_{km} = \frac{1}{Jk} \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} y_{nj}.$$
 (2)

Sidenote: a perhaps more straightforward definition of a cost matrix would be $\bar{G}_{m'm} = G_{(m'-m)m}$, the sum of squared residuals for a segment from m to m'-1. I use version (1) because it makes it easier to use the condition of maximum segment length $(k \le k_{\text{max}})$, which I need to get the algorithm from complexity $O(N^2)$ to O(N).

2 Algebra

$$G_{km} = \sum_{j=1}^{J} \sum_{n=m}^{m+k-1} (y_{nj} - \hat{\mu}_{km})^2$$
 (3)

$$= \sum_{n,j} y_{nj}^2 - \frac{1}{Jk} \left(\sum_{n',j'} y_{n'j'} \right)^2 \tag{4}$$

$$= \sum_{n} q_n - \frac{1}{Jk} \left(\sum_{n'} r_{n'} \right)^2 \tag{5}$$

with

$$q_n := \sum_{j} y_{nj}^2 \tag{6}$$

$$r_n := \sum_{j} y_{nj} \tag{7}$$

If y is an $N \times J$ matrix, then the N-vectors q and r can be obtained by

q = rowSums(y*y)
r = rowSums(y)

Now define

$$c_{\nu} = \sum_{n=1}^{\nu} r_n \tag{8}$$

$$d_{\nu} = \sum_{n=1}^{\nu} q_n \tag{9}$$

which be obtained from

c = cumsum(r)d = cumsum(q)

then (5) becomes

$$(d_{m+k-1} - d_{m-1}) - \frac{1}{Jk}(c_{m+k-1} - c_{m-1})^2 \tag{10}$$