RPA: analysis of probe reliability and gene expression
on short oligonucleotide arrays

Leo Lahti*
leo.lahti@iki.fi

June 27, 2011

1 Introduction

RPA (Robust Probabilistic Averaging)m provides tools for probe reliability analysis and
gene expression preprocessing for (Affymetrix) short oligonucleotide arrays. It can also
be used more generally to summarize multivariate observations that target the same
objects with varying degree of reliability.

RPA can be used for standard preprocessing tasks in gene expression studies; it
has been shown to outperform other popular preprocessing methods in differential gene
expression analysis. In addition, the method provides explicit, data-driven estimates of
probe reliability; poorly performing probes are downweighted in the model, which yields
more accurate estimates of gene expression and can reveal noisy probes independently
of the error source. The noise estimates have been validated by comparisons to known
probe-level error sources. The probabilistic formulation allows also incorporation of prior
information concerning probe reliability into gene expression analysis [7].

2 Preprocessing gene expression data with RPA

RPA provides a wrapper (‘rpa’) for convenient preprocessing of Affymetrix arrays. Al-
ternative CDF environments are also supported (see help(rpa) for details). Here is a
preprocessing example with an example data set:

> library(affydata)
> data(Dilution)
> eset <- rpa(Dilution)

*http://www.iki.fi/Leo.Lahti
'http://bioconductor.org/packages/release/bioc/html/RPA.html


http://bioconductor.org/packages/release/bioc/html/RPA.html

The input is an AffyBatch object. CEL files can be read in as affybatch with the
ReadAffy function of the affy package. The output is an ExpressionSet object, which al-
lows downstream analysis of the results using standard R/BioC tools for gene expression
data.

3 Probe reliability analysis

RPA operates on affybatch objects [3]. An affybatch contains the probe-level data of
Affymetrix arrays. Our toy examples use the Dilution dataset provided by affydata
package. Load example data (the 'Dilution’ affybatch):

> require(affy)
> require(affydata)
> data(Dilution)

RPA.pointestimate is the main function. Let us perform the analysis for particular
probesets in the Dilution data (the whole data set will be analyzed by default if ’sets’ is
not given).

> require (RPA)
> sets <- genelNames(Dilution) [1:2]
> rpa.results <- RPA.pointestimate(Dilution, sets)

The 'rpa2eset’ function can be used to coerce the probeset-level expression estimates
into an ExpressionSet object.
The results for a particular probeset are visualized with

> plot(rpa.results, set = "1000_at")

The output is shown in Figure[I] See help(’rpa.plot’) for details.

3.1 Estimating probe-specific noise and probe reliability

RPA estimates the noise level of each individual probe through the probe-specific vari-
ance parameter (77). These can be obtained with

> noise <- get.probe.noise.estimates(rpa.results)

The higher the variance, the more noisy the probe. Inverse of the variance, 7—1_2, can

be used to quantitate probe reliability. Note that the relative weight of a probe within
probeset is determined by the relative noise of the probe with respect to the other
probes in the same probeset. Comparison of probe-specific variances across probesets
may benefit from normalization of this effect. The get.probe.noise.estimates function
can optionally provide normalized versions of the noise estimates.



1000_at / Probe-level signals and the summary estimate

10

Signal

I I I I
20A 20B 10A 10B

Samples

Figure 1: Estimated probe-specific variances and gene expression signal for an example
probe set.



3.2 Setting probe-specific priors

Prior information of probe reliability can be set by tuning the shape («) and scale (3)
parameters of the inverse Gamma distribution, which is the conjugate prior for the
variances. Set priors for a particular probeset. If the ’priors’ parameter is not given,
non-informative priors will be given for the other probesets:

alpha <- beta <- rep(1, 16)

probe.index <- 5

alpha[[probe.index]] <- 3

beta[[probe.index]] <- 1

priors <- set.priors(Dilution, set = "1000_at", alpha, beta)

vV V.V Vv VvV

Run RPA with priors:

> rpa.results <- RPA.pointestimate(Dilution, sets, priors = priors)

3.3 General usage

RPA can be used more generally to summarize multivariate observations of the same
object with varying noise levels, see function rpa.fit:

> res <- rpa.fit(S)

4 The probabilistic model

4.1 Relation to other probe-level models

RPA differs from other popular preprocessing algorithms in two key respects. First,
it utilizes probe-level estimates of differential expression; these are calculated before
probeset-level summarization, which avoids certain probe-level effects that obscure the
results in other preprocessing methods where probes with various affinities and contami-
nation levels are combined into a probeset-level summary prior to differential expression
analyses. In particular, our procedure avoids the modeling of unidentifiable probe affini-
ties, which is the key probe-specific parameter in many preprocessing methods. Second,
RPA provides tools for investigating the reliability of individual probes in terms of a
probe-specific variance. This can be used in microarray design and in confirming the
end results of a microarray study. These properties distinguish RPA from other probe-
level preprocessing methods such as dChip’s MBEI [§], RMA [5], or FARMS [4].



4.2 Summary of RPA model
4.2.1 Background correction and normalization

The probe-level data is background corrected, normalized, and log2-transformed before
the analysis. By default, RPA uses the background correction model of RMA [6] and
quantile normalization [2]. Our implementation utilizes the affy package [3] to handle
probe-level data. For details about short oligonucleotide arrays and the design of the
Affymetrix GeneChip arrays, see the Affymetrix MAS manual [1].

4.2.2 Probe reliability estimation and summarization

The RPA algorithm is used to obtain probeset-level summaries for gene expression and
to estimate probe-specific noise. RPA assumes a Gaussian model for probe effects. Let
us consider a probe set targeted at measuring the expression level of target transcript
g. Probe-level observation s;; of probe j on array ¢ is modeled as a sum of the true
expression signal (common for all probes in the probeset), and probe-specific Gaussian
noise: s;; = g; + pj + €;;. The stochastic noise component is probe-specific, distributed
as €5 ~ N (O,TJ»Q). The variance parameters {sz} are of interest in probe reliability
analysis; the inverse variance 1 /Tj2 can be used to measure of probe reliability (see
get.probe.noise.estimates function).

The mean parameter 1 of the noise model describes systematic probe affinity effect,
which is unidentifiable. These parameters cancel out in RPA when the signal log-ratio
between a user-specified 'reference’ array and the remaining arrays is calculated at probe
level: the differential expression signal between arrays ¢t = {1,...,7} and the reference
array c for probe j is given by my; = Sij — S¢j = Gt — g + €1j — €¢j = di + €1j — ;-
In vector notation the differential expression profile of probe j across the arrays can be
written as m; = d + ;. In practice, d and the probe-specific variances {Tj}le for the
P probes within the probeset are estimated simultaneously based on the probabilistic
model. With large sample sizes the solution will converge to estimating the mean of
the probe-level observations weighted by probe reliability. Note that the algorithm is
robust to choice of the reference array since the reference effect is marginalized out in
the probabilistic treatment; our experiments confirm that the probe-level noise estimates
are not affected by the choice of the reference array.

4.2.3 Estimation of probe affinity terms

Probe affinity terms and the original signal level are estimated after summarizing the
probe-level differential gene expression estimates. First an estimate of the absolute
signal level is calculated based on particular modeling assumptions. Then probe-specific
affinities are calculated by comparing each probe to the probeset-level signal estimate.
Let us write the probe-level observation in terms of differential expression signal,
absolute signal level, and stochastic noise as s; = d + p + €, where p is a scalar (vector
with identical elements). This will indicate how much probe-level observation deviates



from the estimated signal shape d. This can be decomposed as & = firear + [iprove, Where
Hrear describes the 'real” signal level, common for all probes and fi,,.e describes probe
affinity effect. Let us assume that firepe N(0,07,0.). This encodes the assumption that
in general the affinity effect of each probe tends to be close to zero. Then ML estimates
of fireqt and fiprope are calculated based on these particular assumptions. This part of
the algorithm has not been defined in full probabilistic terms, we are only providing the
point estimates.

If an identical prior is used for all probes in affinity estimation then pi,...; is estimated
as the average of the probe effects p and the probe-specific affinities pprope Will sum
to exactly zero (‘zeromean’ option). This is analogous to the model used in RMA,
which uses medianpolish algorithm to fit this assumption. In contrast to our model
the stochastic probe effects are not probe-specific in RMA. We suggest an alternative
approach where probes are weighted during affinity estimation ('rpa’ option). While
o2 estimated by RPA measures stochastic noise, not the affinity effect, we utilize them
to give a heuristic weigh for the probes in affinity estimation according to how much
they contribute to the overall signal shape. Intuitively, probes that have little effect on
the signal shape (i.e. are very noisy and likely to be contaminated by many unrelated
signals) should also contribute less to the absolute signal estimate. The probe affinities
are expected to sum to zero but the model allows some flexibility.

5 Citing RPA

Please cite [7] when using the package.

6 Details

This document was written using:
> sessionInfo()

R version 2.13.0 (2011-04-13)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C



attached base packages:
[1] stats graphics grDevices utils datasets methods Dbase

other attached packages:
[1] hgu95av2cdf_2.8.0 RPA_1.8.01 affydata_1.11.11 affy_1.30.0
[5] Biobase_2.12.1

loaded via a namespace (and not attached):

[1] affyio_1.20.0 preprocessCore_1.14.0 tools_2.13.0
References
[1] Affymetrix. Affymetric Microarray Suite User Guide. Affymetrix, Santa Clara, CA,

2]

version 5 edition, 2001.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of
normalization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics, 19(2):185-193, 2003.

L. Gautier, L. Cope, B. M. Bolstad, and R. A. Irizarry. affy—analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics, 20(3):307-315, 2004.

S. Hochreiter, D.-A. Clevert, and K. Obermayer. A new summarization method for
affymetrix probe level data. Bioinformatics, 22(8):943-949, 2006.

R. A. Trizarry, B. M. Bolstad, F. Collin, L. M. Cope, B. Hobbs, and T. P. Speed.
Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res., 31(4):el5,
2003.

R. A. Irizarry, B. Hobbs, F. Collin, Y. D. Beazer-Barclay, K. J. Antonellis, U. Scherf,
and T. P. Speed. Exploration, normalization, and summaries of high density oligonu-
cleotide array probe level data. Biostatistics, 4(2):249-264, 2003.

L. Lahti, L. L. Elo, T. Aittokallio, and S. Kaski. Probabilistic analysis of probe
reliability in differential gene expression studies with short oligonucleotide arrays.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(1):217-
225, 2011.

C. Li and W. H. Wong. Model-based analysis of oligonucleotide arrays: Expression
index computation and outlier detection. Proc. Natl. Acad. Sci., 98:31-36, 2001.



	Introduction
	Preprocessing gene expression data with RPA
	Probe reliability analysis
	Estimating probe-specific noise and probe reliability
	Setting probe-specific priors
	General usage

	The probabilistic model
	Relation to other probe-level models
	Summary of RPA model
	Background correction and normalization
	Probe reliability estimation and summarization
	Estimation of probe affinity terms


	Citing RPA
	Details

