1 Introduction

2 Background information

3 Illustrating dataset

4 Specifying the pipeline

5 Running the pipeline

6 Visualizing the results

7 Comparing pipelines

8 Example with two different QC methods

9 Visualizing scale transformations

10 Defining technical run parameters

Session information

## R version 4.5.0 (2025-04-11 ucrt)
## Platform: x86_64-w64-mingw32/x64
## Running under: Windows Server 2022 x64 (build 20348)
## 
## Matrix products: default
##   LAPACK version 3.12.1
## 
## locale:
## [1] LC_COLLATE=C                          
## [2] LC_CTYPE=English_United States.utf8   
## [3] LC_MONETARY=English_United States.utf8
## [4] LC_NUMERIC=C                          
## [5] LC_TIME=English_United States.utf8    
## 
## time zone: America/New_York
## tzcode source: internal
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] patchwork_1.3.0       CytoPipelineGUI_1.7.0 CytoPipeline_1.9.0   
## [4] BiocStyle_2.37.0     
## 
## loaded via a namespace (and not attached):
##   [1] DBI_1.2.3             gridExtra_2.3         httr2_1.1.2          
##   [4] rlang_1.1.6           magrittr_2.0.3        clue_0.3-66          
##   [7] GetoptLong_1.0.5      matrixStats_1.5.0     compiler_4.5.0       
##  [10] RSQLite_2.4.0         png_0.1-8             vctrs_0.6.5          
##  [13] reshape2_1.4.4        stringr_1.5.1         pkgconfig_2.0.3      
##  [16] shape_1.4.6.1         crayon_1.5.3          fastmap_1.2.0        
##  [19] dbplyr_2.5.0          magick_2.8.6          labeling_0.4.3       
##  [22] promises_1.3.3        ncdfFlow_2.55.0       rmarkdown_2.29       
##  [25] graph_1.87.0          tinytex_0.57          purrr_1.0.4          
##  [28] bit_4.6.0             xfun_0.52             cachem_1.1.0         
##  [31] jsonlite_2.0.0        flowWorkspace_4.21.0  blob_1.2.4           
##  [34] later_1.4.2           parallel_4.5.0        cluster_2.1.8.1      
##  [37] R6_2.6.1              bslib_0.9.0           stringi_1.8.7        
##  [40] RColorBrewer_1.1-3    jquerylib_0.1.4       Rcpp_1.0.14          
##  [43] bookdown_0.43         iterators_1.0.14      knitr_1.50           
##  [46] zoo_1.8-14            IRanges_2.43.0        flowCore_2.21.0      
##  [49] httpuv_1.6.16         tidyselect_1.2.1      dichromat_2.0-0.1    
##  [52] yaml_2.3.10           doParallel_1.0.17     codetools_0.2-20     
##  [55] curl_6.2.3            lattice_0.22-7        tibble_3.2.1         
##  [58] plyr_1.8.9            Biobase_2.69.0        shiny_1.10.0         
##  [61] withr_3.0.2           evaluate_1.0.3        BiocFileCache_2.99.5 
##  [64] circlize_0.4.16       pillar_1.10.2         BiocManager_1.30.25  
##  [67] filelock_1.0.3        foreach_1.5.2         flowAI_1.39.0        
##  [70] stats4_4.5.0          generics_0.1.4        diagram_1.6.5        
##  [73] S4Vectors_0.47.0      ggplot2_3.5.2         ggcyto_1.37.0        
##  [76] scales_1.4.0          xtable_1.8-4          PeacoQC_1.19.0       
##  [79] glue_1.8.0            changepoint_2.3       tools_4.5.0          
##  [82] hexbin_1.28.5         data.table_1.17.4     XML_3.99-0.18        
##  [85] grid_4.5.0            RProtoBufLib_2.21.0   colorspace_2.1-1     
##  [88] cli_3.6.5             rappdirs_0.3.3        cytolib_2.21.0       
##  [91] ComplexHeatmap_2.25.0 dplyr_1.1.4           Rgraphviz_2.53.0     
##  [94] gtable_0.3.6          sass_0.4.10           digest_0.6.37        
##  [97] BiocGenerics_0.55.0   rjson_0.2.23          farver_2.1.2         
## [100] memoise_2.0.1         htmltools_0.5.8.1     lifecycle_1.0.4      
## [103] GlobalOptions_0.1.2   mime_0.13             bit64_4.6.0-1