Package 'mbkmeans'

July 3, 2025

```
Type Package
Title Mini-batch K-means Clustering for Single-Cell RNA-seq
Version 1.25.0
Description Implements the mini-batch k-means algorithm for large
     datasets, including support for on-disk data representation.
Depends R (>= 3.6)
Imports methods, DelayedArray, Rcpp, S4Vectors, SingleCellExperiment,
      SummarizedExperiment, ClusterR, benchmarkme, Matrix,
Suggests beachmat, HDF5Array, Rhdf5lib, BiocStyle, TENxPBMCData,
     scater, DelayedMatrixStats, bluster, knitr, testthat, rmarkdown
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
LinkingTo Rcpp, RcppArmadillo (>= 0.7.2), Rhdf5lib, beachmat, ClusterR
SystemRequirements C++11
VignetteBuilder knitr
biocViews Clustering, GeneExpression, RNASeq, Software,
     Transcriptomics, Sequencing, SingleCell
BugReports https://github.com/drisso/mbkmeans/issues
git_url https://git.bioconductor.org/packages/mbkmeans
git_branch devel
git_last_commit fe624b7
git_last_commit_date 2025-04-15
Repository Bioconductor 3.22
Date/Publication 2025-07-02
Author Yuwei Ni [aut, cph],
      Davide Risso [aut, cre, cph],
      Stephanie Hicks [aut, cph],
     Elizabeth Purdom [aut, cph]
Maintainer Davide Risso <risso.davide@gmail.com>
```

2 clusterRows

Contents

Index		10
	predict_mini_batch_r	9
	predict_mini_batch	
	mini_batch	6
	MbkmeansParam	6
	mbkmeans	3
	compute_wcss	
	clusterRows	2
	blocksize	

blocksize

blocksize

Description

Return the maximum number of rows to use based on the amount of ram memory.

Usage

```
blocksize(data, ram = get_ram())
```

Arguments

data matrix-like object.

ram the max amount of ram (in bytes) to use.

Value

Numeric value of the maximum number of rows.

Examples

```
data <- matrix(NA, nrow = 100, ncol=1000)
blocksize(data, ram=1e6)</pre>
```

clusterRows

Cluster rows of a matrix

Description

Cluster rows of a matrix-like object with a variety of algorithms.

Details

This function is deprecated. Please use the clusterRows function in the bluster Bioconductor package.

compute_wcss 3

compute_wcss

Compute Whithin-Cluster Sum of Squares

Description

Given a vector of cluster labels, a matrix of centroids, and a dataset, it computes the WCSS.

Usage

```
compute_wcss(clusters, cent, data)
```

Arguments

clusters numeric vector with the cluster assignments.

cent numeric matrix with the centroids (clusters in rows, variables in columns).

data matrix-like object containing the data (numeric or integer).

Value

A numeric vector with the value of WCSS per cluster.

Examples

```
data = matrix(1:30,nrow = 10)
cl <- mini_batch(data, 2, 10, 10)
compute_wcss(cl$Clusters, cl$centroids, data)</pre>
```

mbkmeans

Mini-Batch k-means for large single cell sequencing data

Description

This is an implementation of the mini-batch k-means algorithm of Sculley (2010) for large single cell sequencing data with the dimensionality reduction results as input in the reducedDim() slot.

Usage

```
mbkmeans(x, ...)
## S4 method for signature 'SummarizedExperiment'
mbkmeans(x, whichAssay = 1, ...)
## S4 method for signature 'SingleCellExperiment'
mbkmeans(x, reduceMethod = "PCA", whichAssay = 1, ...)
## S4 method for signature 'LinearEmbeddingMatrix'
mbkmeans(x, ...)
```

4 mbkmeans

```
## S4 method for signature 'ANY'
mbkmeans(
  х,
  clusters,
  batch\_size = min(500, NCOL(x)),
  max_iters = 100,
  num_init = 1,
  init_fraction = batch_size/NCOL(x),
  initializer = "kmeans++",
  compute_labels = TRUE,
  calc_wcss = FALSE,
  early_stop_iter = 10,
  verbose = FALSE,
  CENTROIDS = NULL,
  tol = 1e-04,
  BPPARAM = BiocParallel::SerialParam(),
)
```

Arguments

x The object on which to run mini-batch k-means. It can be a matrix-like object (e.g., matrix, Matrix, DelayedMatrix, HDF5Matrix) with genes in the rows and samples in the columns. Specialized methods are defined for SummarizedEx-

periment and SingleCellExperiment.

... passed to 'blockApply'.

whichAssay The assay to use as input to mini-batch k-means. If x is a SingleCellExperiment,

this is ignored unless reduceMethod = NA.

reduceMethod Name of dimensionality reduction results to use as input to mini-batch k-means.

Set to NA to use the full matrix.

clusters the number of clusters

batch_size the size of the mini batches. By default, it equals the minimum between the

number of observations and 500.

max_iters the maximum number of clustering iterations

num_init number of times the algorithm will be run with different centroid seeds

init_fraction proportion of data to use for the initialization centroids (applies if initializer is

kmeans++). Should be a float number between 0.0 and 1.0. By default, it uses

the relative batch size.

initializer the method of initialization. One of kmeans++ and random. See details for

more information

compute_labels logical indicating whether to compute the final cluster labels.

calc_wcss logical indicating whether the per-cluster WCSS is computed. Ignored if 'com-

pute_labels = FALSE'.

early_stop_iter

continue that many iterations after calculation of the best within-cluster-sum-of-

squared-error

verbose either TRUE or FALSE, indicating whether progress is printed during clustering

CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should

be equal to the number of clusters and the columns should be equal to the

columns of the data

mbkmeans 5

tol a float number. If, in case of an iteration (iteration > 1 and iteration < max_iters)

'tol' is greater than the squared norm of the centroids, then kmeans has con-

verged

BPPARAM See the 'BiocParallel' package. Only the label assignment is done in parallel.

Details

The implementation is largely based on the MiniBatchKmeans function of the ClusterR package. The contribution of this package is to provide support for on-disk data representations such as HDF5, through the use of DelayedMatrix and HDF5Matrix objects, as well as for sparse data representation through the classes of the Matrix package. We also provide high-level methods for objects of class SummarizedExperiment, SingleCellExperiment, and LinearEmbeddingMatrix.

This function performs k-means clustering using mini batches.

kmeans++: kmeans++ initialization. Reference: http://theory.stanford.edu/~sergei/papers/kMeansPP-soda.pdf AND http://stackoverflow.com/questions/5466323/how-exactly-does-k-means-work

random: random selection of data rows as initial centroids

Value

A list with the following attributes: centroids, WCSS_per_cluster, best_initialization, iters_per_initialization. a list with the following attributes: centroids, WCSS_per_cluster, best_initialization, iters_per_initialization

Author(s)

Lampros Mouselimis and Yuwei Ni

References

Sculley. Web-Scale K-Means Clustering. WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA. ACM 978-1-60558-799-8/10/04.

https://github.com/mlampros/ClusterR

Examples

```
library(SummarizedExperiment)
se <- SummarizedExperiment(matrix(rnorm(100), ncol=10))
mbkmeans(se, clusters = 2)
library(SingleCellExperiment)
sce <- SingleCellExperiment(matrix(rnorm(100), ncol=10))
mbkmeans(sce, clusters = 2, reduceMethod = NA)
x<-matrix(rnorm(100), ncol=10)
mbkmeans(x,clusters = 3)</pre>
```

6 mini_batch

MbkmeansParam

Mini-batch k-means clustering

Description

Run the mini-batch k-means mbkmeans function with the specified number of centers within clusterRows from the bluster Bioconductor package.

Usage

```
MbkmeansParam(centers, ...)
```

Arguments

centers

An integer scalar specifying the number of centers. Alternatively, a function that takes the number of observations and returns the number of centers. Note, the mbkmeans function uses the argument clusters argument to represent this argument. However, we use centers to match

.. Further arguments to pass to mbkmeans.

Details

This function is deprecated. Please use the MbkmeansParam function in the bluster Bioconductor package.

mini_batch

Mini_batch

Description

Mini-batch-k-means for matrix-like objects

Usage

```
mini_batch(
  data,
  clusters,
  batch_size,
  max_iters,
  num_init = 1L,
  init_fraction = 1,
  initializer = "kmeans++",
  compute_labels = TRUE,
  calc_wcss = FALSE,
  early_stop_iter = 10L,
  verbose = FALSE,
  CENTROIDS = NULL,
  tol = 1e-04
)
```

mini_batch 7

Arguments

data numeric or integer matrix-like object.

clusters the number of clusters.
batch_size the size of the mini batches.

max_iters the maximum number of clustering iterations.

num_init number of times the algorithm will be run with different centroid seeds.

init_fraction percentage of data to use for the initialization centroids (applies if initializer is

kmeans++). Should be a float number between 0.0 and 1.0.

initializer the method of initialization. One of kmeans++ and random. See details for

more information.

compute_labels logical indicating whether to compute the final cluster labels.

calc_wcss logical indicating whether the within-cluster sum of squares should be computed

and returned (ignored if 'compute_labels = FALSE').

early_stop_iter

continue that many iterations after calculation of the best within-cluster-sum-of-

squared-error.

verbose logical indicating whether progress is printed on screen.

CENTROIDS an optional matrix of initial cluster centroids. The rows of the CENTROIDS

matrix should be equal to the number of clusters and the columns should be

equal to the columns of the data.

tol convergence tolerance.

Details

This function performs k-means clustering using mini batches. It was inspired by the implementation in https://github.com/mlampros/ClusterR.

The input matrix can be in any format supported by the 'DelayedArray' / 'beachmat' framework, including the matrix classes defined in the 'Matrix' package and the 'HDFMatrix' class.

There are two possible initializations.

kmeans++: kmeans++ initialization.

random: random selection of data rows as initial centroids.

Value

a list with the following attributes:

centroids: the final centroids;

WCSS_per_cluster (optional): the final per-cluster WCSS.

best_initialization: which initialization value led to the best WCSS solution;

iters_per_initialization: number of iterations per each initialization;

Clusters (optional): the final cluster labels.

References

Sculley, D., 2010, April. Web-scale k-means clustering. In Proceedings of the 19th international conference on World wide web (pp. 1177-1178). ACM.

Arthur, D. and Vassilvitskii, S., 2007, January. k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). Society for Industrial and Applied Mathematics.

8 predict_mini_batch

Examples

```
data = matrix(1:30,nrow = 10)
mini_batch(data, 2, 10, 10)
```

predict_mini_batch

Predict_mini_batch

Description

Prediction function for mini-batch k-means applied to matrix-like objects.

Usage

```
predict_mini_batch(data, CENTROIDS)
```

Arguments

data matrix-like object containing numeric or integer data (obseravtions in rows, vari-

ables in columns).

CENTROIDS a matrix of initial cluster centroids. The rows of the CENTROIDS matrix should

be equal to the number of clusters and the columns should equal the columns of

the data.

Details

This function takes the data and the output centroids and returns the clusters.

This implementation relies very heavily on the MiniBatchKmeans implementation. We provide the ability to work with other matrix-like objects other than base matrices (e.g, DelayedMatrix and HDF5Matrix) through the beachmat library.

Value

it returns a vector with the clusters.

Author(s)

Yuwei Ni

Examples

predict_mini_batch_r 9

```
predict_mini_batch_r Compute labels for mini-batch k-means
```

Description

Given a data matrix and a centroid matrix, it assigns each data point to the closest centroid, using block processing.

Usage

```
predict_mini_batch_r(
  data,
  centroids,
  BPPARAM = BiocParallel::SerialParam(),
  ...
)
```

Arguments

data a matrix-like object with features in row and samples in columns.

centroids a matrix with the coordinates of the centroids.

BPPARAM for parallel computations. See the 'BiocParallel' package.

... passed to 'blockApply'.

Value

a vector of cluster labels for each observation.

Examples

Index

```
blocksize, 2
clusterRows, 2
compute_wcss, 3
mbkmeans, 3, 6
{\tt mbkmeans}, {\tt ANY-method} ({\tt mbkmeans}), {\tt 3}
{\tt mbkmeans,LinearEmbeddingMatrix-method}
         (mbkmeans), 3
{\tt mbkmeans}, {\tt SingleCellExperiment-method}
         (mbkmeans), 3
{\tt mbkmeans}, {\tt SummarizedExperiment-method}
         (mbkmeans), 3
MbkmeansParam, 6
\verb|mini_batch|, 6
MiniBatchKmeans, 5, 8
predict_mini_batch, 8
predict_mini_batch_r, 9
show, MbkmeansParam-method
         (MbkmeansParam), 6
```