User’s Manual for Diagram Macros

J. C. Reynolds
December, 1987

Revised for diagmac2.sty
by Bob Tennent
Version 2.1 May, 2009

Contents

1 Introduction 1
2 Programs and States 2
3 The General Macros for Diagrams 4
4 The Macros for Category-Theory Diagrams 11
5 Extensions 16
6 Examples 16

1 Introduction

These macros are in the public domain, and have not changed in many years. Acknowledgement of their
usage is not necessary. However, neither I nor CMU accept any responsibility for the consequences of
errors in these macros or their documentation. This is more than the usual disclaimer; TEX is a beastly
language for programming anything complex, and I am not an expert in its use, so that there are
probably errors lurking in the macros.

John Reynolds?

The file diagmac?2.sty contains TEX macros for producing various kinds of diagrams. It consists
of two parts: a collection of general macros for producing a wide variety of diagrams, and a second
collection of macros (which call upon the first) that are specifically oriented to category-theory
diagrams.

diagmac2.sty is fully compatible with Reynolds’s original diagmac, but takes advantage of
the pict2e implementation of the picture environment to allow arbitrary slopes for edges and
diameters for circles. In this manual, the sections of the original manual that refered to the
limitations have been deleted. Sections 5 and 6 are new in Version 2.1.

The KIEX declarations \thinlines and \thicklines or the pict2e declaration
\linethickness may be used to vary the thickness of lines, arrowheads, and circles.

Yftp://ftp.cs.cmu.edu/user/jcr/README

ftp://ftp.cs.cmu.edu/user/jcr/README

2 Programs and States

Certain parameters to these macros are “programs.” A program is a TEX text that does not directly
produce any output but causes state changes by calling macros. For example, in ITEX, the text
read in picture mode, i.e. the text between \begin{picture} and \end{picture} commands, is a
program that causes state changes by calling the macro \put. (Internally, such macros cause state
changes by assigning to hidden registers and redefining hidden control symbols. As a consequence,
a program cannot call state-changing macros within a group.)

The diagram-producing macros use two kinds of program, called diagram programs and expres-
sion programs. The state manipulated by a diagram program, called a diagram state, is a plane
containing symbols, lines, and circles. Locations on this plane are specified by an z, y-coordinate
system, in which x specifies horizontal distance, with increasing values to the right, and y specifies
vertical distance, with increasing values upwards. The diagram state also contains a “vertex list,”
which is a list of points (i.e. z,y-coordinate pairs) paired with polygonal regions called “shadows.”

The diagram state may also contain a “current edge,” which is a (perhaps invisible) directed
line segment. When the current edge is defined, it is determined by four dimension registers:

e \xstart: the z-coordinate of the start point

e \ystart: the y-coordinate of the start point

e \xend: the z-coordinate of the end point

e \yend: the y-coordinate of the end point,
and two number registers:

e \xslope: the z-component of the slope

e \yslope: the y-component of the slope

giving the slope of the edge, reduced to lowest terms. A diagram program may refer to any of
these quantities, and may also alter the dimension registers explicitly (as well as by calling diagram
macros), providing this alteration preserves the slope of the edge.

The state manipulated by an expression program, called an expression state, is also a plane,
containing an expression and other symbols, etc., upon which is imposed an x, y-coordinate system.
This state contains an invisible “current rectangle,” determined by the four dimension registers:

e \lexpr: the z-coordinate of the left side
e \rexpr: the z-coordinate of the right side
e \texpr: the y-coordinate of the top
e \bexpr: the y-coordinate of the bottom,
and a “center point,” determined by the two dimension registers:
e \xcenter: the z-coordinate of the center point

e \ycenter: the y-coordinate of the center point.

An expression program may refer to or alter these six dimension registers explicitly (as well as by
calling various macros).

The expression state may also contain a (perhaps invisible) polygon called the “current shadow,”
and a (perhaps invisible) circle called the “current circle.” When the current circle is defined, it is
determined by three dimension registers:

e \dcircle: the diameter
e \xcircle: the z-coordinate of the center
e \ycircle: the y-coordinate of the center.

An expression program may refer to or alter these three dimension registers explicitly (as well as
by calling various macros).

The qualification “perhaps invisible” is meant to indicate that the position, shape, and size
of edges, shadows, and circles are established by one group of macros (e.g. \setedge, \rect,
\octagon, \setcircle), but that these entities are actually drawn, i.e. made to appear on the
plane of the diagram or expression state, by another group of macros (e.g. \drawsolidedge,
\outline, \drawcircle).

In calls of the diagram macros, a coordinate is sometimes specified by a dimension, but often it
is specified by a number (i.e. integer) that gives the coordinate as a multiple of the dimension that
is the meaning of the control symbol \diagramunit. This control symbol is defined to be 1pt, but
the user may redefine it to be some other dimension, either in his main program or at the beginning
of a diagram program.

In addition to the control symbols discussed in this description, this collection of macros defines
a large number of control symbols that are normally no concern of the user. To avoid the accidental
redefinition of these symbols by the user, they are all given names beginning with \zz.

3 The General Macros for Diagrams

We now describe the general macros for drawing diagrams. The main level macro is
\diagram{<diagram program>}

It executes the diagram program that is its only parameter, and then issues the final state produced
by this program as a horizontal box whose height, width, and depth are just enough to enclose all
of the symbols and lines in this state, plus the origin (0,0) of the coordinate system. The height
(depth) will be the distance from the horizontal line y = 0 to the highest (lowest) extent of any
symbol or line.

Within a diagram program, one can call the following macros:

\vertex<number:x-coord>,<number:y-coord>:
{<balanced mathematical text>}{<expression program>}

\vertex sets the jbalanced mathematical text; in math mode, with text style, and creates an
expression state containing the resulting expression, with the current rectangle just enclosing the
expression. The center point is placed midway between the left and right sides of the current rect-
angle, at a height above the baseline of the expression given by the control symbol \centerheight,
which is defined to be 3pt. (The effect is to place the center point on the axis of the expression.
However, the user may need to change the definition of \centerheight if he is using unusual fonts
or script style.) The reference point of the expression will lie at the origin of the coordinate system.

Next, \vertex executes the <expression program> to modify the expression state. Then the
material in the expression state is placed in the current diagram state, at a position so that the
center point lies at the point <number:x-coord>,<number:y-coord>. Finally, if the expression
state contains a current shadow, the point <number:x-coord>,<number:y-coord> is paired with
the shadow and placed on the vertex list.

\place<number:x-coord>,<number:y-coord>:
{<balanced mathematical text>}{<expression program>}

\placed{<dimen:x-coord>}{<dimen:y-coord>}
{<balanced mathematical text>}{<expression program>}

\place behaves the same way as \vertex, except that nothing is placed on the vertex list. \placed
behaves the same way as \place, except that the coordinates at which the center point is placed
are expressed by dimensions rather than numbers.

\setedge<number:x-start-coord>,<number:y-start-coord>,
<number :x-end-coord>,<number:y-end-coord>:

\setedge makes the current edge a directed line segment from the point “start” given by its first
two parameters to the point “end” given by its last two parameters. This line segment is invisible
(until it is drawn by one of the macros discussed below).

\setedge also examines the vertex list to obtain any shadows that have been associated with
the start or end points by prior executions of \vertex.

\shiftedge{<dimen:length>}

\shiftedge displaces the current edge by a vector whose length is determined by the
<dimen:length> parameter, and whose direction is obtained by rotating the current edge 90 degrees
counterclockwise.

\shadeedge

\shadeedge changes the extent of the current edge, without displacing or rotating it, to exclude the
portions of the edge lying within shadows associated with its start and end points. If the execution
of \setedge that established the current edge found a shadow associated with the start point, then
\shadedge will shorten (or conceivably lengthen) the current edge so that its start point lies on
the boundary of the shadow. (If this is not possible, the start point will be adjusted to be as close
as possible to the shadow.) The end point is adjusted similarly.

\drawsolidedge
\drawsolidedge draws the current edge as a solid line.
\drawdashedge{<dimen:length>}{<dimen:length>}{<number>}{<number>}

\drawdashedge draws the current edge as a dashed line. The dashed line will always begin and end
with a dash. The number of dashes will be as large as possible subject to the constraint that, if one
or more blanks occur, the dashes will be at least as long as the first parameter and the blanks will
be at least as long as the second parameter. If one or more blanks occur, the excess length of the
dashes and of the blanks will be proportional to the third and fourth parameters respectively. The
first two parameters must be positive dimensions, and the last two parameters must be nonnegative
numbers whose sum is positive.

\drawdotedge{<dimen:length>}{<1 or 0>}

\drawdotedge draws the current edge as a dotted line. The number of dots will be the largest
number such that the distance between dots is at least as large as the first parameter, which must
be a positive dimension. A dot will always appear at the start point, and will appear at the end
point if the second parameter is 1. If the second parameter is 0 then the final dot will be omitted.

\drawedgehead{<number:0 to 100>}{<1 or 0>}{<1 or 0>}

\drawedgehead draws an arrowhead on the current edge at a distance from the start point of p
times the length of the edge, where p is the first parameter divided by 100. The arrowhead will
point to the end point if the second parameter is 1, or to the start point if the second parameter is
0. If the third parameter is 1, the arrowhead will be advanced towards its tip by the value of the
control symbol \edgeheaddisp, which is defined to be 4pt, but may be redefined by the user.

\abutleft<number:y-coord>:

{<balanced mathematical text>}{<expression program>}

\abutright<number:y-coord>:
{<balanced mathematical text>}{<expression program>}

\abutbelow<number :x-coord>:
{<balanced mathematical text>}{<expression program>}

\abutabove<number :x-coord>:
{<balanced mathematical text>}{<expression program>}

Each of these macros uses the <balanced mathematical text> to initialize an expression state
(in the same way as \vertex) and then executes the <expression program>, which must establish
a shadow. The material in the expression state is then placed in the diagram state, at a location
such that the shadow touches the current edge (or its extension as an infinite line), and lies to
the left (or to the right, below, or above, as determined by the macro name). For \abutleft
and \abutright, which must not be used when the current edge is horizontal, the first parameter
gives the y-coordinate of the point at which the center point is to be located. For \abutbelow and
\abutabove, which must not be used when the current edge is vertical, the first parameter gives
the z-coordinate.

\abutleftd{<dimen:y-coord>}
{<balanced mathematical text>}{<expression program>}

\abutrightd{<dimen:y-coord>}
{<balanced mathematical text>}{<expression program>}

\abutbelowd{<dimen:x-coord>}
{<balanced mathematical text>}{<expression program>}

\abutaboved{<dimen:x-coord>}
{<balanced mathematical text>}{<expression program>}

Each of these macros behaves the same way as its cousin, described above, except that the first
parameter is a dimension instead of a number.
Within an expression program, one can call the following macros:

\leftghost{<balanced mathematical text>}

\rightghost{<balanced mathematical text>}

These macros change \xcenter (the z-coordinate of the center point). The
<balanced mathematical text> is set in an hbox, using math mode, text style, which is
ignored except for its width. \leftghost sets \xcenter to the left of the current rectangle plus
half the width of the hbox. \rightghost sets \xcenter to the right of the current rectangle
minus half the width of the hbox. The effect is to place the “ghost expression” (invisibly) within
the current rectangle at the left or right side, and to move the center point horizontally to the
midpoint of the ghost expression.

\border{<dimen:x-length>}{<dimen:y-length>}
\borderto{<dimen:x-length>}{<dimen:y-length>}

\symmetrize

These macros enlarge the current rectangle. \border moves the left and right sides outwards by
its first parameter, and raises the top and lowers the bottom by its second parameter. (If either
parameter is negative, the rectangle will contract.) \borderto enlarges the current rectangle so
that its width is at least the first parameter and its height (including depth) is at least the second
parameter. (Equal amounts will be added at the left and right, and at the top and bottom.)

\symmetrize raises the top or lowers the bottom so that they are equally distant from the center
point.

\place<number:x-coord>,<number:y-coord>:
{<balanced mathematical text>}{<expression program>}

\placed{<dimen:x-coord>}{<dimen:y-coord>}
{<balanced mathematical text>}{<expression program>}

These macros can be called from expression programs as well as diagram programs. They have no
effect on the current rectangle or center point.

\rect
\rect defines the current shadow to be the current rectangle.
\hexagon

\hexagon defines the current shadow to be a hexagon with two horizontal sides identical with the
top and bottom of the current rectangle, and four sides of slope (4 or - 1), (+ or - 2).

\octagon{<dimen:length>}

\octagon defines the current shadow to be an octagon inscribed in the current rectangle. The
horizontal sides and vertical sides are shorter than those of the current rectangle by twice the
parameter, and the remaining sides have slope (+ or - 1), (+ or - 1).

\diamond

\diamond defines the current shadow to be a square, just large enough to enclose the current
rectangle, whose sides have slope (+ or - 1), (4 or - 1).

\rorect{<dimen:diameter>}{<1 or 0>}{<1 or 0>}

\rorect defines the current shadow to be a rectangle with rounded (i.e. quarter-circle) corners.
The diameter of the corners is determined as follows.

1. Take the maximum of:

(a) the first parameter;
(b) if the second parameter is 1, then the width of the current rectangle, else 0;
(c) if the third parameter is 1, then the height of the current rectangle, else 0.

2. Take the diameter of the smallest printable circle larger or equal to (1), or if no such printable
circle exists, take the diameter of the largest printable circle.

The shadow is then the smallest rounded rectangle with corners of this diameter such that the
corresponding true (unrounded) rectangle encloses the current rectangle.
The effect (if there is a sufficiently large printable circle) is to produce:

if the 2nd parameter is and the 3rd parameter is

a rounded rectangle 0 0
a vertical oblong 1 0
a horizontal oblong 0 1
a circle 1 1

If the shadow is drawn (using \outline, as described below) its shape will be the rounded rectangle
just described. However, if the shadow is used to shade an edge or to abut an expression to an
edge or circle, then a slight fudge occurs: the shadow is taken to be the smallest octagon (with the
same shape as that produced by \octagon) enclosing the specified rounded rectangle.

\outline
\outline draws the current shadow.
\setcircle{<dimen:diameter>}{<dimen:x-coord>}{<dimen:y-coord>}

\setcircle defines the current circle to have a diameter given by the first parameter and a center
defined by the second and third parameter.

\shiftcircle{<dimen:x-length>}{<dimen:y-length>}
\shiftcircle displaces the current circle by the vector described by its parameters.

\drawcircle<l or O:upper right quadrant><1 or O:lower right quadrant>
<1 or O:lower left quadrant><l or O:upper left quadrant>

\drawcircle draws the current circle. More precisely, it draws those quadrants of the current circle
for which the corresponding parameter is 1.

\drawcirclehead{<number:x-slope>}{<number:y-slope>}{<1 or 0>}

\drawcirclehead draws an arrowhead on the current circle, at the intersection with a directed
line segment starting at the center with a slope determined by the first two parameters. If the
third parameter is 1 (0) the arrowhead will point in a clockwise (counterclockwise) direction. The
arrowhead will be advanced towards its tip by the distance \circleheaddisp. This control symbol
is defined to be 2pt, but may be redefined by the user.

\abutcircleleft{<dimen:y-length>}
{<balanced mathematical text>}{<expression program>}

\abutcircleright{<dimen:y-length>}
{<balanced mathematical text>}{<expression program>}

\abutcirclebelow{<dimen:x-length>}
{<balanced mathematical text>}{<expression program>}

\abutcircleabove{<dimen:x-length>}
{<balanced mathematical text>}{<expression program>}

Each of these macros uses the <balanced mathematical text> to initialize an expression state (in
the same way as \vertex) and then executes the <expression program>, which must establish a
shadow. The material in the final expression state produced by this program is then placed in the
expression state of the expression program containing the call of \abutcircle... , at a location
such that shadow touches the current circle on the outside of this circle. For \abutcircleleft
and \abutcircleright the first parameter gives the y-coordinate of the point at which the center
is to be located. For \abutcirclebelow and \abutcircleabove the first parameter gives the
z-coordinate.

Actually, the abutment is approximate. For \abutcircleabove, the shadow is abutted against
three tangents to the current circle, that touch at the top of the circle and at the two points 45
degrees to the left and right of the top, and is then given the lowest of the three positions obtained
by these abutments. The other three macros behave similarly.

An Example Consider the simple example in Figure 1. This call of \diagram contains a diagram
program in which the four calls of \vertex place the expressions A, B, A, and B’ at the four corners
of a 100pt by 150pt rectangle. Then come four groups of five calls that draw edges along the sides
of this rectangle and abut expressions to the middles of these edges.

In each group, \setedge determines the position of the edge, \shadeedge adjusts the end
points to exclude the shadows of the expressions that have been placed at these points by \vertex,
\drawsolidedge draws the edge as a solid line, and \drawedgehead places an arrowhead at the
end of the edge. Then \abut... places an expression above, below, to the left, or to the right of
the midpoint of the edge, so that its shadow touches the edge.

In the calls of \vertex, {\border{3pt}{4pt}\rect} is an expression program that en-
larges the current rectangle by 3pt at the left and right and by 4pt at the top and bot-
tom, and then establishes this expanded rectangle as the shadow. In the calls of \abut...,
{\border{2pt}{2pt}\octagon{3pt}} is an expression program that enlarges the current rect-
angle by 2pt on each side and then defines the shadow to be an octagon inscribed in this expanded
rectangle, with slanted edges of length 4.24pt.

The result is as follows:

A ¢ B

a b
Y

A/ C/ B/

\[

\diagram{
\vertex 0,100:{A}{\border{3pt}{4pt}\rect}
\vertex 150,100:{B}{\border{3pt}{4pt}\rect}
\vertex 0,0:{A’}{\border{3pt}{4pt}\rect}
\vertex 150,0:{B’}{\border{3pt}{4pt}\rect}

\setedge 0,100,150,100:

\shadeedge

\drawsolidedge

\drawedgehead{100}10

\abutabove 75:{\textstyle c}{\border{2pt}{2pt}\octagon{3pt}}

\setedge 0,0,150,0:

\shadeedge

\drawsolidedge

\drawedgehead{100}10

\abutbelow 75:{\textstyle c’}{\border{2pt}{2pt}\octagon{3ptl}}

\setedge 0,100,0,0:

\shadeedge

\drawsolidedge

\drawedgehead{100}10

\abutleft 50:{\textstyle a}{\border{2pt}{2pt}\octagon{3ptl}}

\setedge 150,100,150,0:

\shadeedge

\drawsolidedge

\drawedgehead{100}10

\abutright 50:{\textstyle b}{\border{2pt}{2pt}\octagon{3ptl}}

Figure 1: A Simple Example

10

4 The Macros for Category-Theory Diagrams

Now we describe the additional macros oriented towards category-theory diagrams. The main level
program is

\ctdiagram{<diagram program>}

\ctdiagram is similar to \diagram, except that it executes \ctsolid, \cthead, and \ctoutermid
(described below) before the <diagram program>, so that the category-theory macros for drawing
edges will draw solid edges with arrowheads and will calculate midpoints of edges before shading
or displacement.

Within a diagram program, one can call the following macros (in addition to the general macros
described previously):

\ctvg<number :x-coord>,<number:y-coord>:
{<balanced mathematical text>}{<expression program>}

\ctv<number:x-coord>,<number:y-coord>:{<balanced mathematical text>}
\ctvg is similar to \vertex, except that:

1. The <balanced mathematical text> is set in \ctvertexstyle. The control symbol
\ctvertexstyle is defined to be \displaystyle, but may be redefined by the user.

2. The execution of the <expression program> is followed by a “standard expression program”
that enlarges the current rectangle by \ctvertexborderlr on the left and right and by
\ctvertexbordertb on the top and bottom, and then creates a rectangular shadow of the
same size. The control symbols \ctvertexborderlr and \ctvertexbordertb are defined to
be 3pt and 4pt respectively, but may be redefined by the user.

\ctv is similar to \ctvg except that only the standard expression program is executed.

\ctsolid
\ctdash

\ctdot

These macros cause subsequent executions of the edge-drawing macros described below
to draw solid, dashed, or dotted edges respectively. Horizontal and vertical dashed
edges are drawn by \drawdashedge{7pt}{7pt}11, but other dashed edges are drawn by
\drawdashedge{15pt}{7pt}01. Dotted edges are drawn by \drawdotedge{8pt}1. (These con-
ventions can be altered by redefining the macros \zzctdrawdashedge and \zzctdrawdotedge.)

\cthead

\ctnohead

\cthead (\ctnohead) causes subsequent executions of the edge-drawing macros described below to
draw (not to draw) arrowheads.

11

\cten<number:x—start—coord>,<number:y—start—coord>,<number:x—end—coord>,
<number:y-end-coord>:

\cten draws an edge from z-start to z-end, after shading the start and end points with any shadows
associated with these points on the vertex list. The edge will be solid, dashed, or dotted depending
upon whether \ctsolid, \ctdash, or \ctdot was called last. An arrowhead will or will not be
placed at the end point depending upon whether \cthead or \ctnohead was called last.

\ctetg<number:x-start-coord>,<number:y-start-coord>,<number:x-end-coord>,
<number : y-end-coord>;<number:x-coord>:{<balanced mathematical text>}

\ctebg<number:x-start-coord>,<number:y-start-coord>,<number:x-end-coord>,
<number :y-end-coord>; <number:x-coord>:{<balanced mathematical text>}

\ctelg<number:x-start-coord>,<number:y-start-coord>,<number:x-end-coord>,
<number :y-end-coord>; <number:y-coord>:{<balanced mathematical text>}

\cterg(number:X-start—coord>,<number:y—start-coord>,<number:x—end—coord>,
<number :y-end-coord>; <number:y-coord>:{<balanced mathematical text>}

Each of these macros draws an edge in the same way as \cten, and then abuts the
<balanced mathematical text> to the

top for \ctetg
bottom for \ctebg
left for \ctelg

right for \cterg

of the edge, with its center placed at the z-coordinate (for \ctetg or \ctebg) or y-coordinate (for
\ctelg or \cterg) specified by the fifth parameter. The abutted expression is set in \ctabutstyle,
with an octagonal shadow (of the shape produced by \octagon). This octagon will be inscribed in
a rectangle obtained by bordering the expression by \ctabutborderlr on the left and right, and
by \ctabutbordertb on the top and bottom; the length of the slanted sides of the octagon will be
\ctabutborderinset times the square root of 2.

The relevant control symbols are defined to be:

\ctabutstyle \textstyle
\ctabutborderlr 2pt
\ctabutbordertb 2pt
\ctabutborderinset 3pt

These symbols may be redefined by the user, but \ctabutborderinsetdouble must also be rede-
fined so that its value is twice \ctabutborderinset.

\ctetg and \ctebg should not be used to draw a vertical edge; \ctelg and \cterg should not
be used to draw a horizontal edge.

\ctetbg<number:X—start—coord>,<number:y—start—coord>,<number:x—end—coord>,
<number:y-end-coord>;<number :x-coord>,<number:x-coord>:
{<1 or 0>}{<1 or 0>}
{<balanced mathematical text>}{<balanced mathematical text>}

12

\ctetbg draws a pair of edges in the same manner as \cten and then abuts the first
<balanced mathematical text> above the pair, in the same manner as \ctetg, with its
center placed at the xz-coordinate specified by the fifth parameter, and abuts the second
<balanced mathematical text> below the pair, in the same manner as \ctebg, with its cen-
ter placed at the z-coordinate specified by the sixth parameter. If the seventh parameter is 1
(and \cthead has been called most recently), the arrowhead on the upper edge will occur at the
end point; otherwise it will occur (pointing backwards) at the start point. The eighth parameter
controls the arrowhead on the lower edge similarly. The distance between the edges will be twice
the control symbol \ctdoubleedgedisp, which is defined to be 2pt, but may be redefined by the
user.
\ctetbg should not be used to draw a vertical edge.

\ctelrg<number:x-start-coord>,<number:y-start-coord>,<number:x-end-coord>,
<number:y-end-coord>;<number:y-coord>,<number:y-coord>:
{<1 or 0>}{<1 or 0>}
{<balanced mathematical text>}{<balanced mathematical text>}

\ctelrg draws a pair of edges in the same manner as \cten and then abuts the first
<balanced mathematical text> to the left, in the same manner as \ctetg, with its cen-
ter placed at the y-coordinate specified by the fifth parameter, and abuts the second
<balanced mathematical text> to the right, in the same manner as \ctebg, with its center
placed at the y-coordinate specified by the sixth parameter. If the seventh parameter is 1 (and
\cthead has been called most recently), the arrowhead on the left edge will occur at the end point;
otherwise it will occur (pointing backwards) at the start point. The eighth parameter controls the
arrowhead on the right edge similarly. The distance between the edges will be twice the control
symbol \ctdoubleedgedisp, which is defined to be 2pt, but may be redefined by the user.
\ctelrg should not be used to draw a horizontal edge.

\ctet<number:x-start—coord>,<number:y-start-coord>,<number:x-end-coord>,
<number:y-end-coord>:{<balanced mathematical text>}

\cteb<number:x—start—coord>,<number:y-start—coord>,<number:X—end—coord>,
<number:y-end-coord>:{<balanced mathematical text>}

\ctel<number:x-start—coord>,<number:y-start-coord>,<number:X-end-coord>,
<number:y-end-coord>:{<balanced mathematical text>}

\Cter<number:x—start—coord>,<number:y—start—coord>,<number:x—end—coord>,
<number:y-end-coord>:{<balanced mathematical text>}

\ctetb<number:x—start—coord>,<number:y—start—coord>,<number:x—end—coord>,
<number:y-end-coord>:{<1 or 0>}{<1 or 0>}
{<balanced mathematical text>}{<balanced mathematical text>}

\ctelr<number:x-start-coord>,<number:y-start-coord>,<number:x-end-coord>,

<number:y-end-coord>:{<1 or 0>}{<1 or 0>}
{<balanced mathematical text>}{<balanced mathematical text>}

13

These macros behave similarly to their cousins described above, except that the fifth parameter
(and also the sixth parameter in the case of \ctetb and \ctelr) is omitted. In its place, these
macros use the - or y-coordinate of the midpoint between the start and end points of the edge. If
\ctoutermid (described below) has been called most recently, then the midpoint will be calculated
from the start and end coordinates given as parameters to the macros. If \ctinnermid (described
below) has been called most recently, then the midpoint will be computed after displacement and
shading, so that it will be the midpoint of the actual line segment that is printed. (In the case of
\ctetb and \ctelr, this midpoint will be calculated separately for the two edges that are printed.)

\ctoutermid

\ctinnermid

These macros control the calculation of edge midpoints as described above.
Within a expression program, one can call the following macros (in addition to the general
macros described previously):

\ctgl{<balanced mathematical text>}

\ctgr{<balanced mathematical text>}

These macros are similar to \leftghost and \rightghost except that the
<balanced mathematical text> is set in \ctvertexstyle.

\ctlptl{<balanced mathematical text>}
\ctlptr{<balanced mathematical text>}
\ctlpbr{<balanced mathematical text>}

\ctlpbl{<balanced mathematical text>}

These macros print a loop (three quarters of a circle) of diameter \ctloopdiameter on the exterior
of the current rectangle, with its center at the

top left for \ctlptl
top right for \ctlptr
bottom right for \ctlpbr
bottom left for \ctlpbl

corner of the current rectangle, and with a clockwise arrowhead at the clockwise end of the loop.
Then the <balanced mathematical text> is abutted to the

left for \ctlptl
right for \ctlptr
right for \ctlpbr
left ~ for \ctlpbl

of the loop, with its center

14

above for \ctlptl
above for \ctlptr
below for \ctlpbr
below for \ctlpbl

the center of the loop by the distance 5pt.

The control symbols \ctloopdiameter and \ctabutcircledisp are defined to be 20pt and 5pt
respectively, but may be redefined by the user.

The current rectangle is expanded by \ctvertexborderlr at the left and right and by
\ctvertexbordertb at the top and bottom before the loop center is determined, and is contracted
to its original size afterwards. Thus the loop center will lie at a corner of the shadow that will be
produced by the “standard expression program” executed by \ctvg. (Actually, the loop center is
displaced by \circleheaddisp, so that the tip of the arrowhead will just touch the shadow.) The
arrowhead is always printed, regardless of the use of \cthead and \ctnohead.

The <balanced mathematical text> issetin \ctabutstyle, and is given an octagonal shadow
in the same manner as by \ctetg. The abutment to the loop is similar to that performed by
\abutcircleleft or \abutcircleright.

\ctlptlcc{<balanced mathematical text>}
\ctlptrcc{<balanced mathematical text>}
\ctlpbrcc{<balanced mathematical text>}

\ctlpblcc{<balanced mathematical text>}

These macros are similar to their cousins described above, except that a counterclockwise arrowhead
is placed at the counterclockwise end of the loop.

An Example The following program produces the same display as the previous example.

\ [
\ctdiagram{
\ctv 0,100:{A}
\ctv 150,100:{B}
\ctv 0,0:{A’}
\ctv 150,0:{B’}
\ctet 0,100,150,100:{c}
\cteb 0,0,150,0:{c’}
\ctel 0,100,0,0:{a}
\cter 150,100,150,0:{b}
}
\]

Less trivial examples of the usage of these macros are found in Section 6 and in diagmactest.tex.

15

5 Extensions

This section describes two macros that have been added to diagmac2.sty by Bob Tennent (and
are not in Reynolds’s original diagmac).

\drawedgebar

\drawedgebar draws a bar across the end of the current edge

\ctec<number:x-start-coord>,<number:y-start-coord>,
<number :x-end-coord>,<number:y-end-coord>,
<number:x-ctrl-coord>,<number:y-ctrl-coord>:{<balanced mathematical text>}

\ctec draws a bezier-curve edge from the start point to the end point, using the third point as a
control point. The <balanced mathematical text> is centered at the control point.

6 Examples

id

/\

I®(I®v)

I® A,

~(I®l)®v

(0

\
PIRV=AI QU

I®v

—Te(le)

A @

\ [

\ctdiagram{
\def\diagramunit{0.8pt}
\ctinnermid

16

\ctv 0

,100:{a}

\ctv 150,100:{f(a)}

\ctv 0

,0:{g(a)?}

\ctv 150,0:{f(g(a))=g(f(a))}
\ctet 0,100,150,100:{f}
\drawedgebar

\cteb 0,0,150,0:{f}
\drawedgebar

\ctel 0,100,0,0:{g}
\drawedgebar

\cter 150,100,150,0:{g}
\drawedgebar

\ [

\ctdiagram{

\ctv 0,0: {I\otimes v}

\ctv 0,60: {(I\otimes I)\otimes v}

\ctv -80,60: {I\otimes (I\otimes v)}

\ctv 80,60: {I\otimes (I\otimes v)}

\ctelg -80,60,0,0;25:{I\otimes\lambda_v\!}

\cterg 80,60,0,0;25:{\,\lambda{_I\otimes v}}

\ctec -80,60,80,60,0,80:{\mathsf{id}}

\cteb -80,60,0,60:{\alpha~{-1}}

\cteb 0,60,80,60:{\alpha~{-1}}

\ctv 0,36:{\rho_I\otimes v =
\lambda_I\otimes v}

\ctnohead

\cten 0,60,0,36:

\cthead

\cten 0,36,0,0:

\ [
\ctdiagram{
o \ctv -60,0:{V}
I \ctv 60,0:{E}
\ctv 0,0: {I}
\cten 0,0,60,0:
/ \ctnohead
o1 \cten -60,0,0,0:
\ctet -50,20,50,20:{\delta_0}
\setcircle{20pt}{\xstart}{\ystart}
\shiftcircle{Opt}{-10pt}
\drawcircle0001
\drawcirclehead{-1}{0}{0}
\setcircle{20pt}{\xend}{\yend}
\shiftcircle{Opt}{-10pt}
\drawcircle1000
\cteb -50,-18,50,-18:{\delta_1}
\setcircle{20pt}{\xstart}{\ystart}
\shiftcircle{Opt}{10pt}
\drawcircle0010
\drawcirclehead{-1}{0}{1}
\setcircle{20pt}{\xend}{\yend}
\shiftcircle{Opt}{10pt}
\drawcircle0100
}
\]

I
S

\ [

\ctdiagram{
\ctv 0,0:{\widetilde{B}}
\ctv 60,0:{B}
\ctv 0,60:{E_b}
\ctv 60,60:{E}
\ctinnermid
\cteb 0,0,60,0:{b}
\cter 0,60,0,0:{q_b}
\cteb 0,60,60,60:{\overline{b}}
\cter 60,60,60,0:{q}
\ctv -40,100: {\widetilde{E}}
\ctec -40,100,0,0,-40,50:{\tilde{q}}
\ctec -40,100,60,60,10,100:{p}
\def\ctvertexborderlr{ipt}
\def\ctvertexbordertb{1ipt}
\ctv -20,80:{\hat{p}}
\ctnohead\ctdot
\def\zzctdrawdotedge{\drawdotedge{2.5pt}1}
\cten -40,100,-20,80:
\cthead
\def\zzctdrawdotedge{\drawdotedge{2.5pt}0}
\cten -20,80,-6,66:
\ctv 5,55:{\mbox{\Large\lrcorner}}

17

(v@)@uw)——I® (Ve (I w))
]@@(7[q:fij£//////’ a1
(I ®v) @w) I ® (py ® w) I®v)® (I ew)
I®a! I® (&) (I®v)®
I®(I®(Wwew) ® (A @ w) (I®v)®@w
\ /
! I® Mg a”! Ao ® w
Swon T Avsu
I])®(vew) P8 (e I®wew) —2% y@w

\ [

I®a

\ctdiagram{\ctinnermid

\ctv 0,0: {(I\otimes I) \otimes(v\otimes w)}

\ctv 0,60: {I\otimes \bigl(I\otimes(v\otimes w)\bigr)}
\ctv 0,120: {I\otimes \bigl((I\otimes v)\otimes w\bigr)}
\ctv 80,180: {I\otimes\bigl((v\otimes I)\otimes w\bigr)}

\ctv 200,0: {I\otimes (v\otimes w)}

\ctv 200,180:{I\otimes \bigl(v\otimes(I\otimes w)\bigr)}

\ctv 280,0:{v\otimes w}
\ctv 280,60:{(I\otimes v)\otimes w}

\ctv 280,120: { (I\otimes v)\otimes(I\otimes w)}

\ctel 0,0,0,60:{\alpha~{-1}}

\ctel 0,60,0,120:{I\otimes \alpha~{-1}}
\ctet 0,0,200,0:{\rho_I\otimes(v\otimes v)}
\ctet 200,0,280,0:{\1lambda_{v\otimes wl}}

\ctelg 0,120,80,180;155:{I\otimes\sigma_{I,v}\otimes w}

\ctet 80,180,200,180:{I\otimes \alpha~{-1}}
\cterg 200,180,280,120;155:{\alpha~{-1}}

\cter 280,120,280,60:{(I\otimes v)\otimes \lambda_w}

\cter 280,60,280,0: {\lambda_v\otimes w}
\ctv 240,30:{\alpha~{-1}}

\ctnohead\cten 200,0,240,30:

\cthead\cten 240,30,280,60:

\ctv 100,30:{I\otimes\lambda_{v\otimes w}}
\ctnohead\cten 0,60,100,30:

\cthead\cten 100,30,200,0:

\ctv 100,60:{I\otimes(\lambda_v\otimes w)}
\ctnohead\cten 0,120,100,60:

\cthead \cten 100,60,200,0:

\ctv 120,120:{I\otimes (\rho_v\otimes w)}
\ctnohead\cten 80,180,120,120:
\cthead\cten 120,120,200,0:

\ctv 200,90:{I\otimes (v\otimes \lambda_w)}
\ctnohead\cten 200,180,200,90:
\cthead\cten 200,90,200,0:

RW©°P In RS
G
rw°P TS
Pb X fﬁ
WOP x W°P Ino x m S xS
(;0 X (;1

\newcommand{\op}{\mathsf{op}}
\newcommand{\vnat}{\Downarrow\mskip-\medmuskip}
\ [
\ctdiagram{
\ctinnermid
\ctv 0,0:{W™\op\times W~ \op}
\ctv 180,0:{S\times S}
\ctv 0,60:{RW™\op}
\ctv 180,60:{RS}
\ctel 0,60,0,0:{\mathit{rw}"\op}
\cter 180,60,180,0:{\mathit{rs}}
\def\ctdoubleedgedisp{6.5pt}
\ctetb 0,60,180,60:11{\widetilde{F}}{\widetilde{G}}
\ctv 98,60:{\vnat\widetilde{\etal}}
\ctetb 0,0,180,0:11{F_O\times F_1}{G_O\times G_1}
\ctv 112,0:{\vnat\eta_O\times\eta_1}

See also the examples in Reynolds’s diagmactest.

19

	Introduction
	Programs and States
	The General Macros for Diagrams
	The Macros for Category-Theory Diagrams
	Extensions
	Examples

