Testing, Implementation, and Forecasting of the ARIMA-ANN hybrid model. The ARIMA-ANN hybrid model combines the distinct strengths of the Auto-Regressive Integrated Moving Average (ARIMA) model and the Artificial Neural Network (ANN) model for time series forecasting.For method details see Zhang, GP (2003) <doi:10.1016/S0925-2312(01)00702-0>.
| Version: | 0.1.0 | 
| Depends: | R (≥ 2.3.1), stats, forecast, tseries | 
| Published: | 2022-10-13 | 
| DOI: | 10.32614/CRAN.package.ARIMAANN | 
| Author: | Ramasubramanian V. [aut, ctb], Mrinmoy Ray [aut, cre] | 
| Maintainer: | Mrinmoy Ray <mrinmoy4848 at gmail.com> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| CRAN checks: | ARIMAANN results | 
| Reference manual: | ARIMAANN.html , ARIMAANN.pdf | 
| Package source: | ARIMAANN_0.1.0.tar.gz | 
| Windows binaries: | r-devel: ARIMAANN_0.1.0.zip, r-release: ARIMAANN_0.1.0.zip, r-oldrel: ARIMAANN_0.1.0.zip | 
| macOS binaries: | r-release (arm64): ARIMAANN_0.1.0.tgz, r-oldrel (arm64): ARIMAANN_0.1.0.tgz, r-release (x86_64): ARIMAANN_0.1.0.tgz, r-oldrel (x86_64): ARIMAANN_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=ARIMAANN to link to this page.