BayesPIM: Bayesian Prevalence-Incidence Mixture Model
Models time-to-event data from interval-censored
  screening studies. It accounts for latent prevalence at baseline and 
  incorporates misclassification due to imperfect test sensitivity. For usage
  details, see the package vignette ("BayesPIM_intro"). Further details can be 
  found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024),
  "A Bayesian prevalence-incidence mixture model for screening outcomes with 
  misclassification", <doi:10.48550/arXiv.2412.16065>.
| Version: | 1.0.0 | 
| Depends: | R (≥ 3.5.0), coda | 
| Imports: | Rcpp, mvtnorm, MASS, ggamma, doParallel, foreach, parallel, actuar | 
| LinkingTo: | Rcpp | 
| Suggests: | knitr, rmarkdown | 
| Published: | 2025-03-22 | 
| DOI: | 10.32614/CRAN.package.BayesPIM | 
| Author: | Thomas Klausch [aut, cre] | 
| Maintainer: | Thomas Klausch  <t.klausch at amsterdamumc.nl> | 
| BugReports: | https://github.com/thomasklausch2/BayesPIM/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/thomasklausch2/bayespim | 
| NeedsCompilation: | yes | 
| Materials: | README | 
| CRAN checks: | BayesPIM results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BayesPIM
to link to this page.