Transforms your uncalibrated Machine Learning scores to well-calibrated prediction estimates that can be interpreted as probability estimates. The implemented BBQ (Bayes Binning in Quantiles) model is taken from Naeini (2015, ISBN:0-262-51129-0). Please cite this paper: Schwarz J and Heider D, Bioinformatics 2019, 35(14):2458-2465.
| Version: | 0.1.2 | 
| Depends: | R (≥ 2.10.0) | 
| Imports: | ggplot2, pROC, reshape2, parallel, foreach, stats, fitdistrplus, doParallel | 
| Published: | 2019-08-19 | 
| DOI: | 10.32614/CRAN.package.CalibratR | 
| Author: | Johanna Schwarz, Dominik Heider | 
| Maintainer: | Dominik Heider <heiderd at mathematik.uni-marburg.de> | 
| License: | LGPL-3 | 
| NeedsCompilation: | no | 
| Citation: | CalibratR citation info | 
| CRAN checks: | CalibratR results | 
| Reference manual: | CalibratR.html , CalibratR.pdf | 
| Package source: | CalibratR_0.1.2.tar.gz | 
| Windows binaries: | r-devel: CalibratR_0.1.2.zip, r-release: CalibratR_0.1.2.zip, r-oldrel: CalibratR_0.1.2.zip | 
| macOS binaries: | r-release (arm64): CalibratR_0.1.2.tgz, r-oldrel (arm64): CalibratR_0.1.2.tgz, r-release (x86_64): CalibratR_0.1.2.tgz, r-oldrel (x86_64): CalibratR_0.1.2.tgz | 
| Old sources: | CalibratR archive | 
| Reverse suggests: | ENMTools | 
Please use the canonical form https://CRAN.R-project.org/package=CalibratR to link to this page.