FDboost 1.1.0 (2022-07-12)
Miscellaneous
- Anisotropic tensor-product operators b1 %A0% b2andb1 %Xa0% b2now also work whenlambdais
specified forb1anddfis specified forb2(or vice versa).
New features
- New function clr()to compute the centered-log-ratio
transform and its inverse for density-on-scalar regression in Bayes
spaces.
- New dataset birthDistribution.
- New vignette illustrating density-on-function regression on the
birthDistributiondata.
- Function factorize()added for tensor-product
factorization of estimated effects or models.
FDboost 0.3.4 (2020-08-31)
Bug fixes
- Fix predict()forbsignal()withnewdataand the functional covariate given as a numeric
matrix, raised in #17.
- Deprecated argument LINPACKinsolve()removed.
FDboost 0.3.3 (2020-06-13)
New features
- It is now possible to specify several time variables as well as
factor time variables in the timeformula. This feature is
needed for the manifoldboost package.
Miscellaneous
- The function stabsel.FDboost()now usesapplyFolds()instead ofvalidateFDboost()to
do cross-validation with recomputation of the smooth offset. This is
only relevant for models with a functional response. This will change
results if the model contains base-learners likebbsc()orbolsc(), asapplyFolds()also recomputes the
Z-matrix for those base-learners.
Bug fixes
- Adapted functions integrationWeights()andintegrationWeightsLeft()for unsorted time variables.
- Changed code in predict.FDboost()such that interaction
effects of two functional covariates likebsignal() %X% bsignal()can be predicted with new
data.
- Adapt FDboost to R 4.0.1 by explicitly using the first entry of
dots$aggregate(i.e.,dots$aggregate[1] != "sum") inpredict.FDboost()so that it also works with the default,
whereaggregateis a vector of length 3 and later only the
first argument is used viamatch.arg().
FDboost 0.3.2 (2018-08-04)
Bug fixes
- Deprecated argument correctedincvrisk()removed.
FDboost 0.3.1 (2018-05-10)
Bug fixes
- cvrisk()has by default adequate folds for a noncyclic
fitted FDboostLSS model, see #14.
Miscellaneous
- Replaced cBind()(which is deprecated) withcbind().
FDboost 0.3.0 (2017-05-31)
User-visible changes
- New function bootstrapCI()to compute bootstrapped
coefficients.
- Added the dataset emotioncontaining EEG and EMG
measures under different experimental conditions.
- With scalar response, FDboost()now works with the
response as a vector (instead of a 1-row matrix); thus,fitted()andpredict()return a vector.
Bug fixes
- update.FDboost()now works with a scalar response.
- FDboost()works with family- Binomial(type = "glm"), see #1.
- applyFolds()works for factor response, see #7.
- cvLong()and- cvMA()return a matrix for
only one resampling fold with- B = 1(proposed by Almond
Stoecker).
Miscellaneous
- Adapt FDboosttomboost2.8-0, which
allows formstop = 0.
- Restructure FDboostLSS()such that it callsmboostLSS_fit()fromgamboostLSS2.0-0.
- In FDboost, setoptions("mboost_indexmin" = +Inf)to disable internal use
of ties in model fitting, as this breaks some methods for models with
responses in long format and for models containingbhistx(), see #10.
- Deprecated validateFDboost(), useapplyFolds()andbootstrapCI()instead.
FDboost 0.2.0 (2016-05-26)
User-visible changes
- Added function applyFolds()to compute the optimal
stopping iteration.
Bug fixes
- Allows for extrapolation in predict()withbbsc().
FDboost 0.1.2 (2016-04-22)
Bug fixes
- Fixed a bug in bolsc(): correctly use the index inbolsc()/bbsc(). Previously, each observation
was used only once for computing Z.
User-visible changes
- Added function %Xa0%that computes a row-tensor product
of two base-learners where the penalty in one direction is zero.
- Added function reweightData()that computes the data
for Bootstrap or cross-validation folds.
- Added function stabsel.FDboost()that refits the smooth
offset in each fold.
- Added argument funtovalidateFDboost().
- Added update.FDboost()that overwritesupdate.mboost().
Miscellaneous
- FDboost()works with- family = Binomial().
FDboost 0.1.1 (2016-04-06)
Bug fixes
- Fixed oobpredinvalidateFDboost()for
irregular response and resampling at the curve level so thatplot.validateFDboost()works for that case.
- Fixed scope of formula in FDboost(): now the formula
given tomboost()withinFDboost()uses the
variables in the environment of the formula specified inFDboost().
Miscellaneous
- plot.FDboost()works for more effects, especially for
effects like- bolsc() %X% bhistx().
FDboost 0.1.0 (2016-03-10)
User-visible changes
- New operator %A0%for Kronecker product of two
base-learners with an anisotropic penalty for the special case wherelambda1orlambda2is zero.
- The base-learner bbsc()can be used withcenter = TRUE(derived by Almond Stoecker).
- In FDboostLSS(), a list of one-sided formulas can be
specified fortimeformula.
Bug fixes
- FDboostLSS()works with- families = GammaLSS().
Miscellaneous
- Operator %A%uses weights in the model call. This only
works correctly for weights on the level ofblg1andblg2(same as weights on rows and columns of the response
matrix).
- Calls to internal functions of mboostare done usingmboost_intern().
- hyper_olsc()is based on- hyper_ols()from- mboost.
FDboost 0.0.17 (2016-02-25)
User-visible changes
- Changed the operator %Xc%for the row tensor product of
two scalar covariates. The design matrix of the interaction effects is
constrained such that the interaction is centered around the intercept
and around the two main effects of the scalar covariates
(experimental!). Use, for example,bols(x1) %Xc% bols(x2).
FDboost 0.0.16 (2016-02-22)
User-visible changes
- Changed the operator %Xc%for row tensor product where
the sum-to-zero constraint is applied to the design matrix resulting
from the row-tensor product (experimental!). Specifically, an
intercept-column is first added, and then the sum-to-zero constraint is
applied. Use, for example,bolsc(x1) %Xc% bolsc(x2).
- The functional index sis now used asargsvalsin the FPCA conducted withinbfpc().
FDboost 0.0.15 (2016-02-12)
User-visible changes
- New operator %A%that implies anisotropic penalties for
differently specifieddfin the two base-learners.
Bug fixes
- No penalty is applied in the direction of ONExin a
smooth intercept specified implicitly by~1, for example,bols(ONEx, intercept=FALSE, df=1) %A% bbs(time).
Miscellaneous
- Effects containing %A%or%O%are not
expanded with thetimeformula, allowing for different
effects over time in the model.
FDboost 0.0.14 (2016-02-11)
User-visible changes
- Added the function FDboostLSS()to fit GAMLSS models
with functional data using R-packagegamboostLSS.
- New operator %Xc%for row tensor product where the
sum-to-zero constraint is applied to the design matrix resulting from
the row-tensor product (experimental!).
- Allowed newdatato be a list inpredict.FDboost()when used with signal base-learners.
- Expanded coef.FDboost()so that it works for
3-dimensional tensor products of the formbhistx() %X% bolsc() %X% bolsc()(with David
Ruegamer).
- Added a new possibility for scalar-on-function regression: if
timeformula=NULL, no Kronecker product with1is used, which changes the penalty (otherwise, the direction of1would also be penalized).
Miscellaneous
- New dependency on R-package gamboostLSS.
- Removed dependency on R-package MASS.
- Used the argument predictionin the internal
computation of the base-learners (work in progress).
- Throw an error if timeLabof thehmatrix-object inbhistx()is not equal to the
time variable intimeformula.
FDboost 0.0.13 (2015-11-17)
User-visible changes
- In function FDboost(), the offset is supplied
differently. For a scalar offset, useoffset = "scalar".
The default remainsoffset = NULL.
- predict.FDboost()has a new argument- toFDboost(logical).
- fitted.FDboost()has argument- toFDboostexplicitly (not only via- ...).
- New base-learner bhistx(), especially suited for
effects used with%X%, e.g.,bhistx() %X% bolsc().
- coef.FDboost()and- plot.FDboost()now
handle effects like- bhistx() %X% bolsc().
- For predict.FDboost()with effectsbhistx()and newdata, the latestmboostPatchis necessary.
Bug fixes
- The check for the necessity of a smooth offset works for missing
values in a regular response (spotted by Tore Erdmann).
FDboost 0.0.12 (2015-09-15)
- Internal experimental version.
FDboost 0.0.11 (2015-06-01)
User-visible changes
- integrationWeights()now gives equal weights for
regular grids.
- New base-learner bfpc()for a functional covariate
where both the functional covariate and the coefficient are expanded
using fPCA (experimental feature!). Only works for regularly observed
functional covariate.
Bug fixes
- coef.FDboost()only works for- bhist()if
the time variable is the same in the timeformula and in- bhist().
- predict.FDboost()now checks that only- type = "link"can be predicted for newdata.
FDboost 0.0.10 (2015-04-16)
User-visible changes
- Changed the default difference penalties to first-order difference
(differences = 1), improving identifiability.
- New method cvrisk.FDboost()that uses (by default)
sampling on the levels of curves, which is important for functional
responses.
- Reorganized documentation of cvrisk()andvalidateFDboost().
- In bhist(), an effect can be standardized.
Miscellaneous
- Added a CITATIONfile.
- Uses mboost 2.4-2, which exports all important
functions.
Bug fixes
- mainargument is always passed in- plot.FDboost().
- bhist()and- bconcurrent()now work for
equal- timeand- s.
- predict.FDboost()works with tensor-product
base-learners like- bl1 %X% bl2.