Inference, goodness-of-fit tests, and predictions for continuous and discrete univariate  Hidden Markov Models (HMM), including zero-inflated distributions. The goodness-of-fit test is based on a Cramer-von Mises statistic and uses parametric bootstrap to estimate the p-value. The description of the methodology is taken from Nasri et al (2020) <doi:10.1029/2019WR025122>.
| Version: | 0.2.6 | 
| Depends: | R (≥ 3.5.0), doParallel, parallel, foreach | 
| Imports: | ggplot2, stats, matrixcalc, reshape2, rmutil, VaRES, VGAM, EnvStats, GLDEX, GeneralizedHyperbolic, actuar, extraDistr, gamlss.dist, sgt, skewt, sn, ssdtools, stabledist | 
| Published: | 2025-09-07 | 
| DOI: | 10.32614/CRAN.package.GenHMM1d | 
| Author: | Bouchra R. Nasri [aut, cre, cph],
  Mamadou Yamar Thioub [aut, cph],
  Bruno N. Remillard [aut, cph] | 
| Maintainer: | Bouchra R. Nasri  <bouchra.nasri at umontreal.ca> | 
| License: | GPL-3 | 
| NeedsCompilation: | no | 
| CRAN checks: | GenHMM1d results |