## ----include = FALSE---------------------------------------------------------- options(device = "png") knitr::opts_chunk$set( fig.ext = "png", collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(MethScope) ## ----eval=FALSE--------------------------------------------------------------- # #path to your .cg and .cm files # example_file <- "example.cg" # reference_pattern <- "Liu2021_MouseBrain.cm" # input_pattern <- GenerateInput(example_file, reference_pattern) ## ----eval=FALSE--------------------------------------------------------------- # prediction_result <- PredictCellType(MethScope:::Liu2021_MouseBrain_P1000,input_pattern) ## ----eval=FALSE--------------------------------------------------------------- # trained_model <- Input_training(input_pattern,cell_type_label) ## ----eval=FALSE--------------------------------------------------------------- # umap_plot <- PlotUMAP(input_pattern,prediction_result) # ### cell_type_label is the true cell type label # PlotConfusion(prediction_result,cell_type_label) # PlotF1(prediction_result,cell_type_label) ## ----eval=FALSE--------------------------------------------------------------- # reference_pattern <- "Liu2021_MouseBrain.cm" # reference_input <- readRDS("2021Liu_reference_pattern.rds") # cell_proportion <- nnls_deconv(reference_input,input_pattern) ## ----eval=FALSE--------------------------------------------------------------- # Pattern.obj <- CreateSeuratObject(counts = t(input_pattern), assay = "DNAm") # VariableFeatures(Pattern.obj) <- rownames(Pattern.obj[['DNAm']]) # DefaultAssay(Pattern.obj) <- "DNAm" # Pattern.obj <- NormalizeData(Pattern.obj, assay = "DNAm", verbose = FALSE) # Pattern.obj <- ScaleData(Pattern.obj, assay = "DNAm", verbose = FALSE) # ### Can directly use the initial counts matrix # Pattern.obj@assays$DNAm@layers$scale.data <- as.matrix(Pattern.obj@assays$DNAm@layers$counts) # Pattern.obj <- RunPCA(Pattern.obj,assay="DNAm",reduction.name = 'mpca', verbose = FALSE) # Pattern.obj <- FindNeighbors(Pattern.obj, reduction = "mpca", dims = 1:30) # Pattern.obj <- FindClusters(Pattern.obj, verbose = FALSE, resolution = 0.7) # Pattern.obj <- RunUMAP(Pattern.obj, reduction = "mpca", reduction.name = "meth.umap", dims = 1:30)